CMOS-TECHNOLOGY - STATUS, TRENDS AND APPLICATIONS

1988 ◽  
Vol 49 (C4) ◽  
pp. C4-13-C4-22
Author(s):  
F. NEPPL ◽  
H.-J. PFLEIDERER
Keyword(s):  
1988 ◽  
Vol 49 (C4) ◽  
pp. C4-41-C4-44
Author(s):  
G. J.T. DAVIDS ◽  
P. B. HARTOG ◽  
J. W. SLOTBOOM ◽  
G. STREUTKER ◽  
A. G. van der SIJDE ◽  
...  
Keyword(s):  

1988 ◽  
Vol 49 (C4) ◽  
pp. C4-421-C4-424 ◽  
Author(s):  
A. STRABONI ◽  
M. BERENGUER ◽  
B. VUILLERMOZ ◽  
P. DEBENEST ◽  
A. VERNA ◽  
...  

Author(s):  
Lucile C. Teague Sheridan ◽  
Linda Conohan ◽  
Chong Khiam Oh

Abstract Atomic force microscopy (AFM) methods have provided a wealth of knowledge into the topographic, electrical, mechanical, magnetic, and electrochemical properties of surfaces and materials at the micro- and nanoscale over the last several decades. More specifically, the application of conductive AFM (CAFM) techniques for failure analysis can provide a simultaneous view of the conductivity and topographic properties of the patterned features. As CMOS technology progresses to smaller and smaller devices, the benefits of CAFM techniques have become apparent [1-3]. Herein, we review several cases in which CAFM has been utilized as a fault-isolation technique to detect middle of line (MOL) and front end of line (FEOL) buried defects in 20nm technologies and beyond.


Sign in / Sign up

Export Citation Format

Share Document