scholarly journals Physico-chemical and technological properties of ceramic tiles: Role of clay minerals on as pressed and dried compacts properties

2013 ◽  
Vol 5 ◽  
pp. 04011
Author(s):  
N. Gouzouli ◽  
A. Samdi ◽  
R. Moussa ◽  
M. Gomina
Detritus ◽  
2020 ◽  
pp. 100-113
Author(s):  
Mercedes Regadío ◽  
Jonathan A. Black ◽  
Steven F. Thornton

Engineered synthetic liners on their own cannot protect the environment and human health against landfill leachate pollution. Despite their initial impermeability, they are susceptible to failure during and after installation and have no attenuation properties. Conversely, natural clay liners can attenuate leachate pollutants by sorption, redox transformations, biodegradation, precipitation, and filtration, decreasing the pollutant flux. Depending on the clay, significant differences exist in their shrinkage potential, sorption capacity, erosion resistance and permeability to fluids, which affects the suitability and performance of the potential clay liner. Here, the physico-chemical, mineralogical and geotechnical characteristics of four natural clayey substrata were compared to discuss their feasibility as landfill liners. To study their chemical compatibility with leachate and rainwater, hydraulic conductivities were measured every ≈2 days spread over 7 weeks of centrifugation at 25 gravities. At field-scale, this is equivalent to every 3.4 yrs spread over 80 yrs. All the clayey substrata had favourable properties for the attenuation of leachate pollutants, although different management options should be applied for each one. London Clay (smectite-rich) is the best material based on the sorption capacity, hydraulic conductivity and low erodibility, but has the greatest susceptibility to excessive shrinkage and alterable clay minerals that partially collapse to illitic structures. Oxford Clay (illite rich) is the best material for buffering acid leachates and supporting degradation of organic compounds. The Coal Measures Clays (kaoline-rich) have the lowest sorption capacity, but also the lowest plasticity and have the most resistant clay minerals to alteration by leachate exposure.


2004 ◽  
Vol 71 ◽  
pp. 97-106 ◽  
Author(s):  
Mark Burkitt ◽  
Clare Jones ◽  
Andrew Lawrence ◽  
Peter Wardman

The release of cytochrome c from mitochondria during apoptosis results in the enhanced production of superoxide radicals, which are converted to H2O2 by Mn-superoxide dismutase. We have been concerned with the role of cytochrome c/H2O2 in the induction of oxidative stress during apoptosis. Our initial studies showed that cytochrome c is a potent catalyst of 2′,7′-dichlorofluorescin oxidation, thereby explaining the increased rate of production of the fluorophore 2′,7′-dichlorofluorescein in apoptotic cells. Although it has been speculated that the oxidizing species may be a ferryl-haem intermediate, no definitive evidence for the formation of such a species has been reported. Alternatively, it is possible that the hydroxyl radical may be generated, as seen in the reaction of certain iron chelates with H2O2. By examining the effects of radical scavengers on 2′,7′-dichlorofluorescin oxidation by cytochrome c/H2O2, together with complementary EPR studies, we have demonstrated that the hydroxyl radical is not generated. Our findings point, instead, to the formation of a peroxidase compound I species, with one oxidizing equivalent present as an oxo-ferryl haem intermediate and the other as the tyrosyl radical identified by Barr and colleagues [Barr, Gunther, Deterding, Tomer and Mason (1996) J. Biol. Chem. 271, 15498-15503]. Studies with spin traps indicated that the oxo-ferryl haem is the active oxidant. These findings provide a physico-chemical basis for the redox changes that occur during apoptosis. Excessive changes (possibly catalysed by cytochrome c) may have implications for the redox regulation of cell death, including the sensitivity of tumour cells to chemotherapeutic agents.


1971 ◽  
Vol 66 (3) ◽  
pp. 558-576 ◽  
Author(s):  
Gerald Burke

ABSTRACT A long-acting thyroid stimulator (LATS), distinct from pituitary thyrotrophin (TSH), is found in the serum of some patients with Graves' disease. Despite the marked physico-chemical and immunologic differences between the two stimulators, both in vivo and in vitro studies indicate that LATS and TSH act on the same thyroidal site(s) and that such stimulation does not require penetration of the thyroid cell. Although resorption of colloid and secretion of thyroid hormone are early responses to both TSH and LATS, available evidence reveals no basic metabolic pathway which must be activated by these hormones in order for iodination reactions to occur. Cyclic 3′, 5′-AMP appears to mediate TSH and LATS effects on iodination reactions but the role of this compound in activating thyroidal intermediary metabolism is less clear. Based on the evidence reviewed herein, it is suggested that the primary site of action of thyroid stimulators is at the cell membrane and that beyond the(se) primary control site(s), there exists a multifaceted regulatory system for thyroid hormonogenesis and cell growth.


1981 ◽  
Vol 16 (1) ◽  
pp. 45-58 ◽  
Author(s):  
G. Krantzberg ◽  
P.M. Stokes

Abstract An investigation was made of the effects exerted by benthic macroinvertebrate communities on copper speciation in sediments from a lake which is becoming acidified. In laboratory microcosms, benthic macroinvertebrate communities stimulated the flux of copper from sediment to water. The presence of the macro-benthos resulted in a redistribution of physico-chemical copper species within the sediment with a transfer from more strongly complexed forms (HC1 extractable) to adsorbed and cation exchangeable forms (MgCl2 extractable). The role of bio-turbation in copper transformations is discussed.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Thomas Thiebault ◽  
Laëtitia Fougère ◽  
Anaëlle Simonneau ◽  
Emilie Destandau ◽  
Claude Le Milbeau ◽  
...  

AbstractThis study investigated the potential of sediments accumulated in sewer systems to record human activities through the occurrence of drug target residues (DTR). The installation studied is 17 m deep underground decantation tank that traps the coarse fractions of a unitary sewer system (northern part of Orléans, France), collecting both stormwater and wastewater. The sediments deposited in this tank could constitute a nonesuch opportunity to study the historical evolution of illicit and licit drug consumption in the catchment, however, the deposition processes and the record of DTRs remain largely unknown at present. Five cores were acquired from 2015 to 2017. One hundred fifty-two sediment samples were extracted using a mixture of ultra-pure water:methanol (1:1) prior to analysis of the extracts by high-pressure liquid chromatography coupled to tandem mass spectrometry. Several classical sedimentological analyses such as total organic carbon, facies description and granulometry were also performed on these samples, in order to understand the most important factors (e.g., physico-chemical properties of the DTRs, solid type, assumed load in wastewater) impacting their deposition.The key role of the speciation of DTRs was highlighted by the higher contents in neutral and anionic DTRs in organic layers, whereas only cationic DTRs were found in mineral layers. The considerable modifications in the sediments’ properties, generated by distinct origins (i.e., stormwater or wastewater), are therefore the most important drivers that must be taken into account when back-calculating the historical patterns of drug consumption from their DTR concentrations in decantation tank sediments. Further research remains necessary to fully understand the deposition process, but this study provides new clues explaining these temporal evolutions.


2010 ◽  
Vol 2010 ◽  
pp. 1-6 ◽  
Author(s):  
Paloma Bescansa ◽  
Iñigo Virto ◽  
Oihane Fernández-Ugalde ◽  
María José Imaz ◽  
Alberto Enrique

The behaviour of earthworms, their role in organic matter incorporation into the soil, and the influence of aridity in such processes in arid and semiarid regions have scarcely been studied. In this study, physico-chemical analyses of the casts and the surrounding no-till agricultural soils of three experimental sites representing an aridity gradient in Navarre (NW Spain) were done. The casts were formed by the activity of the only anecic species,Scherotheca gigas(Dugès, 1828), ubiquitous in no-till soils in this region. We observed a significant depletion of clay and higher concentration of total organic C and labile C in the form of particulate organic matter (POM) in the casts as compared to the surrounding soil, suggesting selective ingestion of soil byS. gigas. This, together with the observation of increased concentration in POM with increasing aridity, suggests a major role of this species in the observed progressive gains of organic C stocks in no-till soils in the region.


Sign in / Sign up

Export Citation Format

Share Document