scholarly journals The Effect of Pulp Industrial Waste as Chemical Admixture to Compressive Strength of Fly Ash Based Alkali Activated Materials

2017 ◽  
Vol 97 ◽  
pp. 01003
Author(s):  
Andrie Harmaji ◽  
Aishah Mahyarni Imran ◽  
Bambang Sunendar
2019 ◽  
Vol 274 ◽  
pp. 02001
Author(s):  
Cristelo Nuno ◽  
Coelho João ◽  
Miranda Tiago ◽  
Sousa Luis ◽  
Fernández-Jiménez Ana ◽  
...  

Mine tailings could represent a step forward in terms of the quality of the aggregates that usually accepted in civil engineering applications, due to their specific weight and compressive strength. The Neves-Corvo copper mine produces approximately 3 million tons of tailings every year, which could supply several construction works, at least in the south of Portugal. Nevertheless, this industrial waste requires stabilisation, not only due to their high sulphur content, but also due to mechanical performance demands. This paper focus on the stabilisation, without previous thermal treatment, of the mine tailings from Neves-Corvo.


2011 ◽  
Vol 287-290 ◽  
pp. 1237-1240
Author(s):  
Lan Fang Zhang ◽  
Rui Yan Wang

The aim of this paper is to study the influence of lithium-slag and fly ash on the workability , setting time and compressive strength of alkali-activated slag concrete. The results indicate that lithium-slag and fly-ash can ameliorate the workability, setting time and improve the compressive strength of alkali-activated slag concrete,and when 40% or 60% slag was replaced by lithium-slag or fly-ash, above 10 percent increase in 28-day compressive strength of concrete were obtained.


2017 ◽  
Vol 12 (1) ◽  
pp. 63-77 ◽  
Author(s):  
Siriporn Sirikingkaew ◽  
Nuta Supakata

This study presents the development of geopolymer bricks synthetized from industrial waste, including fly ash mixed with concrete residue containing aluminosilicate compound. The above two ingredients are mixed according to five ratios: 100:0, 95:5, 90:10, 85:15, and 80:20. The mixture's physico-mechanical properties, in terms of water absorption and the compressive strength of the geopolymer bricks, are investigated according to the TIS 168-2546 standard. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses are used to investigate the microstructure and the elemental and phase composition of the brick specimens. The results indicate that the combination of fly ash and concrete residue represents a suitable approach to brick production, as required by the TIS 168–2546 standard.


Sign in / Sign up

Export Citation Format

Share Document