Effect of alkali-activators on the setting time and compressive strength for Alkali-Activated Fly Ash mortars

Author(s):  
Mao-Chieh Chi ◽  
Yen-Chun Liu ◽  
Ran Huang
2011 ◽  
Vol 287-290 ◽  
pp. 1237-1240
Author(s):  
Lan Fang Zhang ◽  
Rui Yan Wang

The aim of this paper is to study the influence of lithium-slag and fly ash on the workability , setting time and compressive strength of alkali-activated slag concrete. The results indicate that lithium-slag and fly-ash can ameliorate the workability, setting time and improve the compressive strength of alkali-activated slag concrete,and when 40% or 60% slag was replaced by lithium-slag or fly-ash, above 10 percent increase in 28-day compressive strength of concrete were obtained.


Crystals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 946
Author(s):  
Oriana Rojas-Duque ◽  
Lina Marcela Espinosa ◽  
Rafael A. Robayo-Salazar ◽  
Ruby Mejía de Gutiérrez

This article reports the production and characterization of a hybrid concrete based on the alkaline activation of a fly ash (FA) of Colombian origin, which was added with 10% Portland cement (OPC) in order to promote the compressive strength development at room temperature. The alkali-activated hybrid cement FA/OPC 90/10 was classified as a low heat reaction cement (type LH), according to American Society of Testing Materials, ASTM C1157; the compressive strength was of 31.56 MPa and of 22.68 MPa (28 days) at the levels of paste and standard mortar, respectively, with an initial setting time of 93.3 min. From this binder, a hybrid concrete was produced and classified as a structural type, with a compressive strength of 23.16 MPa and a flexural modulus of rupture of 5.32 MPa, at 28 days of curing. The global warming potential index (GWP 100), based on life cycle analysis, was 35% lower than the reference concrete based on 100% OPC. Finally, its use was validated in the manufacture of a solid block-type construction element, which reached a compressive strength of 21.9 MPa at 28 days, exceeding by 40.6% the minimum strength value established by the Colombia Technical Standard, NTC 4026 (13 MPa) to be classified as high class structural blocks.


2011 ◽  
Vol 250-253 ◽  
pp. 1147-1152 ◽  
Author(s):  
Xiao Jun Jiang ◽  
Yan Yun ◽  
Zhi Hua Hu

The feasibility of manufacturing non-autoclaved aerated concrete using alkali activated phosphorus slag as a cementitious material was investigated in this paper. Liquid sodium silicate with various modules (the molar ratio between SiO2 and Na2O) was used as alkali activator and a part of phosphorus slag was replaced with fly ash which was used to control the setting time of aerated concrete. The influences of the fly ash, curing procedure, modulus of sodium silicate solution and concentration of alkalis on the compressive strength and bulk density of non-autoclaved aerated concrete have been studied. Moreover, the types of the hydration products were investigated using XRD and SEM. The results indicate that: the compressive strength of aerated concrete was influenced by concentration of alkalis obviously. The compressive strength of 11.9MPa and the bulk density of 806kg/m3 were obtained with an activator of 1.2 modulus of sodium silicate and 6% concentration of alkalis under the circumstance of 60°C curing for 28 days.


Minerals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 15 ◽  
Author(s):  
Xiaowei Ouyang ◽  
Yuwei Ma ◽  
Ziyang Liu ◽  
Jianjun Liang ◽  
Guang Ye

This paper presents the results of an experimental study performed to investigate the effect of activator modulus (SiO2/Na2O) and slag addition on the fresh and hardened properties of alkali-activated fly ash/slag (AAFS) pastes. Four activator moduli (SiO2/Na2O), i.e., 0.0, 1.0, 1.5, and 2.0, and five slag-to-binder ratios, i.e., 0, 0.3, 0.5, 0.7, 1.0, were used to prepare AAFS mixtures. The setting time, flowability, heat evolution, compressive strength, microstructure, and reaction products of AAFS pastes were studied. The results showed that the activator modulus and slag content had a combined effect on the setting behavior and workability of AAFS mixtures. Both the activator modulus and slag content affected the types of reaction products formed in AAFS. The coexistence of N–A–S–H gel and C–A–S–H gel was identified in AAFS activated with high pH but low SiO2 content (low modulus). C–A–S–H gel had a higher space-filling ability than N–A–S–H gel. Thus, AAFS with higher slag content had a finer pore structure and higher heat release (degree of reaction), corresponding to a higher compressive strength. The dissolution of slag was more pronounced when NaOH (modulus of 0.0) was applied as the activator. The use of Na2SiO3 as activator significantly refined the pores in AAFS by incorporating soluble Si in the activator, while further increasing the modulus from 1.5 to 2.0 prohibited the reaction process of AAFS, resulting in a lower heat release, coarser pore structure, and reduced compressive strength. Therefore, in view of the strength and microstructure, the optimum modulus is 1.5.


2018 ◽  
Vol 20 (2) ◽  
pp. 51
Author(s):  
Antoni . ◽  
Hendra Surya Wibawa ◽  
Djwantoro Hardjito

This study evaluates the effect of particle size distribution (PSD) of high calcium fly ash on high volume fly ash (HVFA) mortar characteristics. Four PSD variations of high calcium fly ash used were: unclassified fly ash and fly ash passing sieve No. 200, No. 325 and No. 400, respectively. The fly ash replacement ratio of the cementitious material ranged between 50-70%. The results show that with smaller fly ash particles size and higher levels of fly ash replacement, the workability of the mixture was increased with longer setting time. There was an increase in mortar compressive strength with finer fly ash particle size, compared to those with unclassified ones, with the highest strength was found at those with fly ash passing mesh No. 325. The increase was found due to better compactability of the mixture. Higher fly ash replacement reduced the mortar’s compressive strength, however, the rate was reduced when finer fly ash particles was used.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
M. R. Karim ◽  
M. F. M. Zain ◽  
M. Jamil ◽  
F. C. Lai

The increasing demand and consumption of cement have necessitated the use of slag, fly ash, rice husk ash (RHA), and so forth as a supplement of cement in concrete construction. The aim of the study is to develop a zero-cement binder (Z-Cem) using slag, fly ash, and RHA combined with chemical activator. NaOH, Ca(OH)2, and KOH were used in varying weights and molar concentrations. Z-Cem was tested for its consistency, setting time, flow, compressive strength, XRD, SEM, and FTIR. The consistency and setting time of the Z-Cem paste increase with increasing RHA content. The Z-Cem mortar requires more superplasticizer to maintain a constant flow of110±5% compared with OPC. The compressive strength of the Z-Cem mortar is significantly influenced by the amounts, types, and molar concentration of the activators. The Z-Cem mortar achieves a compressive strength of 42–44 MPa at 28 days with 5% NaOH or at 2.5 molar concentrations. The FTIR results reveal that molecules in the Z-Cem mortar have a silica-hydrate (Si-H) bond with sodium or other inorganic metals (i.e., sodium/calcium-silica-hydrate-alumina gel). Therefore, Z-Cem could be developed using the aforementioned materials with the chemical activator.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3448
Author(s):  
Chenhui Jiang ◽  
Aiying Wang ◽  
Xufan Bao ◽  
Zefeng Chen ◽  
Tongyuan Ni ◽  
...  

This paper presents an experimental investigation on geopolymer coatings (GPC) in terms of surface protection of civil structures. The GPC mixtures were prepared with a quadruple precursor simultaneously containing fly ash (FA), ground granulated blast-furnace slag (GBFS), metakaolin (MK), and Portland cement (OPC). Setting time, compressive along with adhesive strength and permeability, were tested and interpreted from a perspective of potential applications. The preferred GPC with favorable setting time (not shorter than 120 min) and desirable compressive strength (not lower than 35 MPa) was selected from 85 mixture formulations. The results indicate that balancing strength and setting behavior is viable with the aid of the multi-componential precursor and the mixture design based on total molar ratios of key oxides or chemical elements. Adhesive strength of the optimized GPC mixtures was ranged from 1.5 to 3.4 MPa. The induced charge passed based on a rapid test of coated concrete specimens with the preferred GPC was 30% lower than that of the uncoated ones. Setting time of GPC was positively correlated with η[Si/(Na+Al)]. An abrupt increase of setting time occurred when the molar ratio was greater than 1.1. Compressive strength of GPC was positively affected by mass contents of ground granulated blast furnace slag, metakaolin and ordinary Portland cement, and was negatively affected by mass content of fly ash, respectively. Sustained seawater immersion impaired the strength of GPC to a negligible extent. Overall, GPC potentially serves a double purpose of satisfying the usage requirements and achieving a cleaner future.


Sign in / Sign up

Export Citation Format

Share Document