scholarly journals Information modeling of windows with the account of thermophysical characteristics

2018 ◽  
Vol 144 ◽  
pp. 04014 ◽  
Author(s):  
Elena Ignatova

The task of improving the buildings energy efficiency is one of the most important tasks in the design of buildings. The buildings energy efficiency can be improved by rational choice of building structures and reduction of the heat transfer. Significant heat transfer of a building occurs through the windows. At the design stage of a building, it is necessary to estimate the magnitude of a heat transfer of different windows. Currently the designers are increasingly using the technology of building information modeling (BIM). 3D-model of the building consists of models of structural elements, which contain information about the different geometric, physical, technological and other characteristics of the structure. The aim of this work is to develop a parametric information model of the window taking into account its heat transfer resistance. In this paper the design of window units with one, two and three sashes are discussed. The value of window-reduced resistance to a heat transfer is calculated inside the window information model and is presented in the table. The method can be applied to different window design. Thermophysical parameter of the window information model can be used to assess the energy costs of operating the building.

2021 ◽  
Vol 9 (4) ◽  
pp. 81-85
Author(s):  
Ol'ga Baranova ◽  
Kseniya Kurushkina

The use of information modeling tools at all stages of the life cycle of a capital construction object allows you to analyze design information in order to make the most correct decision, while significantly reducing the uncertainty of processes by increasing the amount of data available for analysis. One of the labor-intensive processes at the design stage is the selection of the most suitable structural elements, including translucent structures. As part of the work, the normative and reference information related to the calculation of the heat-shielding characteristics of building structures has been analyzed, scientific developments and publications devoted to the automation of the implementation of heat engineering calculations using various software tools are considered. For the purpose of the study, two indicators were calculated: the normalized value of the reduced heat transfer resistance and the reduced heat transfer resistance of the window. To solve the problem, such automation tools as the Dynamo visual programming tool and the Python programming language were used, with the help of which a script was developed for calculating the thermal performance of windows for use in Autodesk Revit (Autodesk, Inc., USA). As part of the study, it was determined that the combined use of the Dynamo visual programming tool and the Python text programming tool, expanding the functionality of Autodesk Revit, made it possible to automate the task of calculating the reduced heat transfer resistance of a window and the normalized heat transfer resistance, taking into account conditions of a specific construction region.


2019 ◽  
Vol 91 ◽  
pp. 08026
Author(s):  
Natalia Knyazeva ◽  
Daria Levina

Information systems with ever-growing and increasingly complex functionality are being actively introduced into the operation services. In the process of development, the information technology finds new ways to improve efficiency of economic activities for enterprises. However, the use of automated operation control systems in the absence of representation of the construction object as a single system leads to an increase in labor costs and resource losses. There are inefficiently used operation facilities of the maintenance services that have to be solved, including energy efficiency. Many experts of operation do not have enough skills to interact with information model. There is a need to expand the application of BIM beyond construction and design, to learn to use the information obtained at these stages. Automated data collection of BIM can solve such problems with the help of BIM scenario or BIM-use. Each set of works with information about the stage of the life cycle of the project and part of project in international practice is called BIM scenarios. In general, the use of BIM scenarios and information modeling (IM) shows a composite, yet little-researched activity that can provide the necessary effect in maintenance, operation, document management, checking the energy efficiency of the building.


Author(s):  
Angelina Rybakova

A data center is a specialized building or room where a company, organization, or government Agency places information and network equipment and then connects to the network. Data centers solve the owner's strategic information and communication tasks. The constant increase in operating costs of data processing cents is driving innovation to improve their efficiency. Today, one of the newest ways to improve the design and functionality of data centers is to integrate building information modeling. Analysis of simulation results and calculated values with existing performance indicators of the data center will help you quickly identify the places of failures or disruptions, as well as form an algorithm for the procedure of intervention in the operation in order to improve efficiency and smooth operation. Integrating the capabilities of information modeling technologies in the design process increases the efficiency of both the overall design of the object and special design indicators for data processing centers. This article describes the basics of integrating information modeling of buildings and data processing centers, the advantages of information modeling approaches, the role of information modeling technologies in the development and improvement of methods for designing data processing centers, as well as ways to implement the information model of the data center. The author proves and explains the necessity of developing an information model of the data center, as well as offers possible implementation tools. In addition to the advantages of the model at the design stage, the author also highlights the possibilities of using data at the subsequent stages of installation and operation.


Author(s):  
Muhammadiya Rifqi ◽  
Heni Fitriani ◽  
Puteri Kusuma Wardhani

Buildings contribute more than 40% of world energy consumption, so it is feared that it will cause energy problems in thefuture, especially in the construction sector. One solution to reducing this problem is by analyzing energy use at the initialdesign stage and utilizing solar energy as one of the solar power plants (PLTS) in office buildings. To analyze the use ofenergy in buildings, Building Information Modeling (BIM) was used. The purpose of this research is to analyze the annualenergy level of office buildings in Palembang using BIM software, namely Autodesk Revit. The number of solar panels aswell as the amount of energy were also identified using web-based software (HelioScope) resulting the economic feasibilityas indicated by the installation of solar panels as a component of PV mini-grid. The results showed that the use of BIMtechnology in analyzing building energy can provide a detailed description of the building model at the design stage. Revitanalysis indicates that the building consumed electrical energy per year for about 3,647,713 kWh with a roof area of 1,657m2. In addition, based on the HelioScope analysis, the use of renewable energy from the installation of PLTS was 152,900kWh/year. Meanwhile, for economic feasibility analysis, the installation of PLTS in office buildings can provide a positive NetPresent Value (NPV), indicating a feasible project.


2018 ◽  
Vol 196 ◽  
pp. 04081 ◽  
Author(s):  
Aleksandr Aleksanin

At the present stage of the development of the construction industry, based on the principles of sustainable development, special attention should be paid to the formation of construction waste. Reserves for improving the level of efficiency of waste management can be found in the application of modern information technologies and their adaptation to resource-saving problems. The use of information systems is advisable at all stages of the life cycle of a building. Today, the technology of building information modeling (BIM) is actively developing, which can significantly reduce the amount of waste generation in construction. This is possible with its implementation at the design stage, in order to avoid irrational design decisions, collisions, etc. Information systems for data transmission allow rapid exchange of information between project participants, promptly warn about changes in space-planning decisions, materials, structures and equipment. At the stage of operation, in the presence of the information model of the building, it is possible to create a planning system for the organization of works of major overhaul or reconstruction. This article also proposes a description of the functions that an information system must have aimed at coordinating the management of construction waste in the region.


Buildings ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 206
Author(s):  
Zixuan Chen ◽  
Ahmed W. A. Hammad ◽  
Imriyas Kamardeen ◽  
Assed Haddad

Windows account for a significant proportion of the total energy lost in buildings. The interaction of window type, Window-to-Wall Ratio (WWR) scheduled and window placement height influence natural lighting and heat transfer through windows. This is a pressing issue for nontropical regions considering their high emissions and distinct climatic characteristics. A limitation exists in the adoption of common simulation-based optimisation approaches in the literature, which are hardly accessible to practitioners. This article develops a numerical-based window design optimisation model using a common Building Information Modelling (BIM) platform adopted throughout the industry, focusing on nontropical regions of Australia. Three objective functions are proposed; the first objective is to maximise the available daylight, and the other two emphasize undesirable heat transfer through windows in summer and winter. The developed model is tested on a case study located in Sydney, Australia, and a set of Pareto-optimum solutions is obtained. Through the use of the proposed model, energy savings of up to 8.57% are achieved.


2018 ◽  
Vol 8 (12) ◽  
pp. 2531 ◽  
Author(s):  
Sang Park ◽  
Junwon Park ◽  
Bong-Geun Kim ◽  
Sang-Ho Lee

The industry foundation classes (IFC) data model is the most important data schema in ensuring the interoperability of the information generated throughout the lifecycle of facilities. However, because the current IFC model is focused on buildings, there are limitations when this model is applied to bridge structures. This paper proposes a method that enables the information modeling of steel box girder bridges based on the current IFC. To select the required and core items, we classify the components of a steel box girder bridge by the design stage with reference to engineering documents. To generate functional meanings of each bridge component, we develop the rules of the unique identifier and information reassignment, and then apply a semi-automated naming algorithm. The generated bridge information model was used to confirm the functional semantic meanings of individual components, and it was checked whether additional external information, such as carbon emissions, could be linked for specific bridge components. It was observed that information retrieval and extraction for components is possible through a semantic-based query to the generated IFC-based bridge information model.


2021 ◽  
Vol 13 (0) ◽  
pp. 1-4
Author(s):  
Viačeslav Zigmund ◽  
Jurgita Antuchevičienė ◽  
Darius Migilinskas

The article analyses implementation of BIM-M (Building Information Modeling for Masonry) into the BIM (Building Information Modeling) project to ensure the preparation of the masonry project. The BIM-M model consists of a masonry database, a masonry unit model, a masonry unit database model, and masonry unit model definition and BIM masonry wall definition model. The case study proposes a BIM-M model for cavity wall, masonry structures involving project stakeholders and ensuring the exchange of information at the design stage CAD (Computer Aided Design) with the ability to transfer information to other life cycles CAM (Computer Aided Manufacturing) and CAE (Computer Aided Engineering).


Sign in / Sign up

Export Citation Format

Share Document