scholarly journals Structure Optimization of Microbial Fuel Cell Reactor Based on Reverse Engineering and Rapid Prototyping

2018 ◽  
Vol 166 ◽  
pp. 01003
Author(s):  
Shuaishuai Lv ◽  
Yangyang Zhu ◽  
Hai Gu ◽  
Hongjun Ni ◽  
Yue Meng ◽  
...  

The structure of Microbial Fuel Cell (MFC) reactor was analyzed and improved by Reverse Engineering (RE) and Rapid Prototyping (RP) technology. Points cloud data of MFC reactor was accessed by hand-held laser scanner. The space surface and entity model were reconstructed accurately, and the structure of the reactor was optimized based on Imageware and Solidworks software. The reactor model was manufactured by RP machine. The optimization efficiency of MFC reactor was improved based on the combination of RE and RP, which has a good reference value for the development of MFC technology and products.

2015 ◽  
Vol 752-753 ◽  
pp. 1301-1306 ◽  
Author(s):  
Xing Xing Wang ◽  
Jin Dong Wei ◽  
Yi Pei ◽  
Yu Zhu ◽  
Hong Jun Ni

Reverse Engineering (RE) and Rapid Prototyping (RP) were used for manufacturing cream bottle. Points cloud data of cream bottle was accessed by handheld laser scanner firstly. Then, points cloud data was handed by Imageware software and the three-dimensional model was formed by Solidworks software. Finally, the entity model was manufacturing by RP machine. In the research, rapid prototyping was combined with reverse engineering technology, manufacturing cycle was shorten, production requirements, improve efficiency and other advantages were met.


2013 ◽  
Vol 2 (2) ◽  
pp. 131-135
Author(s):  
Z Yavari ◽  
H Izanloo ◽  
K Naddafi ◽  
H.R Tashauoei ◽  
M Khazaei

Renewable energy will have an important role as a resource of energy in the future. Microbial fuel cell (MFC) is a promising method to obtain electricity from organic matter andwastewater treatment simultaneously. In a pilot study, use of microbial fuel cell for wastewater treatment and electricity generation investigated. The bacteria of ruminant used as inoculums. Synthetic wastewater used at different organic loading rate. Hydraulic retention time was aneffective factor in removal of soluble COD and more than 49% removed. Optimized HRT to achieve the maximum removal efficiency and sustainable operation could be regarded 1.5 and 2.5 hours. Columbic efficiency (CE) affected by organic loading rate (OLR) and by increasing OLR, CE reduced from 71% to 8%. Maximum voltage was 700mV. Since the microbial fuel cell reactor considered as an anaerobic process, it may be an appropriate alternative for wastewater treatment


2015 ◽  
Vol 752-753 ◽  
pp. 1401-1405 ◽  
Author(s):  
Hong Jun Ni ◽  
Qing Qing Chen ◽  
Yi Pei ◽  
Yi Lv ◽  
Xing Xing Wang

Model design and rapid prototyping are utilized to manufacture push-ups frame. Point cloud data can be obtained by scanning parts with hand-held laser scanner, and imported into the Imageware to process. The varied points are removed, the missing points are repaired, and then the 3D model is designed through the Pro/E. Finally, the frame model is completed by rapid prototyping printers. The manufacturing period is shorten through the way of putting two technologies in the field of manufacturing together, the production requirements are met, and the business efficiency is improved.


2012 ◽  
Vol 503-504 ◽  
pp. 215-218 ◽  
Author(s):  
Da Wei Wu ◽  
Xiao Fei Ding ◽  
Gang Tong

This paper analyzes the structure of molding tool for composite component, and proposes a method of surface design of molding tool based on reverse engineering. By using handy laser scanner, the point cloud data is obtained from the composite component, which is processed in Geomagic Studio. Then the processed data is imported into CATIA for Surface fitting. The surface of molding tool for composite component is rapidly and accurately designed by analyzing 3D error and comparing cross-sectional data.


2012 ◽  
Vol 490-495 ◽  
pp. 2906-2910
Author(s):  
Jun Feng ◽  
Bo Jiang

Through the three-dimensional laser scanner (Non-Contact 3D Digitizer), the outline point cloud of the teacup can be obtained, and the reverse engineering such as cutting, aligning, combining, etc. is conducted to the point cloud in the software of RANGE VIEWER and RapidForm XOR, to achieve the three-dimensional diagram, which can be imported to the rapid prototyping machine, to process the teacup sample and complete the reverse engineering of teacup imitation.


2013 ◽  
Vol 774-776 ◽  
pp. 185-189
Author(s):  
Wei Song ◽  
Xi De Lai ◽  
Guang Fu Li ◽  
Wei Zhang ◽  
Xiao Ming Chen ◽  
...  

To acquire the digital model of axial compressors on the actual projects, a Reverse Engineering procedure of the blade was developed based on point cloud data acquired with the handy laser scanner. For meeting the requirements of geometric characteristics and aerodynamic optimization design and improving acquiring efficiency of point cloud data, the laser triangulation was employed and auxiliary plane and mark points were put on the inlet, outlet and tip of the blade. For solving the problem of low accuracy of fitting surface on the blade, an interactive dividing method of surface slices which based on the streamline, meridian line, contour and its extension line, was presented, it showed that reconstructed surface model can meet the actual projects needs. A completed set of RE technology for axial compressor blades has been developed, and it has been used in actual project combing with the maintenance of a large axial compressor blade.


Sign in / Sign up

Export Citation Format

Share Document