scholarly journals Investigation on the improvement of car air conditioning system performance using an ejector

2018 ◽  
Vol 197 ◽  
pp. 08013
Author(s):  
Enang Suma Arifianto ◽  
Ega Taqwali Berman ◽  
Mutaufiq Mutaufiq

The purpose of this research is to know the improvement of car air conditioner system performance using an ejector. The study was conducted on a car engine with power 100 PS (74 kW) @ 5000 rpm. The test procedure is carried out under two conditions: the normal refrigeration cycle mode and the refrigeration cycle mode with the ejector. The working fluid used in the refrigeration cycle is R-134a. Performance data was measured on engine revolutions ranging from 1500 - 3000 rpm. Finally, the results showed that ejector usage on AC system generates an increase in the refrigeration effect and coefficient of performance (COP) of 25% and 22%, respectively. This has implications to better cooling capacity and compressor work that is lighter.

Author(s):  
A. Anthony Adeyanju ◽  
K. Manohar

Thermoelectric devices use the Peltier effect which creates a heat flux between the junctions of two different types of materials. The thermoelectric module also referred to as a heat pump transfers heat from one side to the other when a DC current is applied. This study carried out the theoretical and experimental analysis of a thermoelectric air conditioning system. A prototype thermoelectric air conditioner of 286 W cooling capacity was built and a testing enclosure made from plywood and Styrofoam was also constructed in order to validate the theoretical result with an experimentation. It was discovered that thermoelectric air conditioning took 4 minutes to reach its desired temperature of 22℃ whereas the standard air conditioning system (Refrigeration Cycle) took 20 minutes to cool to a room temperature. Economically it was also discovered that thermoelectric air conditioning system is 50% cheaper than the refrigeration cycle air conditioning systems. The thermoelectric air conditioner has cheaper maintenance and greater estimated life span of 7 years more than the refrigeration air conditioner. This is because the air conditioner that operates on the refrigeration cycle uses a rotating compressor while the thermoelectric air conditioner uses thermometric module.


Author(s):  
Waseem Raza ◽  
Gwang Soo Ko ◽  
Youn Cheol Park

The rising need for thermal comfort has resulted in a rapid increase in refrigeration systems’ usage and, subsequently, the need for electricity for air-conditioning systems. The ejector system can be driven by a free or affordable low-temperature heat source such as waste heat as the primary source of energy instead of electricity. Heat-driven ejector refrigeration systems become a promising solution for reducing energy consumption to conventional compressor-based refrigeration technologies. An air-conditioning system that uses the ejector achieves better performance in terms of energy-saving. This paper presents a study on the combined driven refrigeration cycle based on ejectors to maximize cycle performance. The experimental setup is designed to determine the coefficient of performance (COP) with ejector nozzle sizes 1.8, 3.6, and 5.4[Formula: see text]mm, respectively. In this system, the R-134a refrigerant is considered as a working fluid. The results depict that the efficiency is higher than that of the conventional refrigeration method due to comparing the performance of the conventional refrigeration cycle and the combined driven refrigeration cycle. The modified cycle efficiency is better than the vapor compression cycle below 0∘C, which implies sustainability at low temperatures by using low-grade thermal energy. For the improvement of mechanical efficiency, proposed cycle can be easily used.


2021 ◽  
Vol 11 (12) ◽  
pp. 5614
Author(s):  
Haidan Wang ◽  
Shengbo Li ◽  
Yulong Song ◽  
Xiang Yin ◽  
Feng Cao ◽  
...  

Due to its considerable impact on climate, bus air conditioning systems are being pushed to take a new and sustainable path. Electric buses relying on transcritical CO2 air conditioning units are perceived to be eco-friendly and future-proof solutions to achieving such a target. However, in order to have highly efficient air conditioning systems, the CO2 charge needs to be optimized. In this paper the energy and exergy-based analyses were performed to investigate the effect of normalized refrigerant charge on the system performance by using a test rig of a transcritical CO2 air conditioning unit for an 8 m electric bus. Results showed that the normalized refrigerant charge range of 0.248~0.336 was recommended in order to ensure the maximum coefficient of performance (COP). In addition, in sufficient charge conditions, the optimal COP, cooling capacity and exergy efficiency were 1.716, 18.97 kW and 29.79%, respectively, under the standard refrigeration condition of 35 °C/27 °C. As the ambient temperature rose from 35 °C to 40 °C, the COP, cooling capacity and exergy efficiency decreased by 16.03%, 10.90% and 12.22%, respectively. Furthermore, the exergy efficiency was found not to be sensitive to slightly insufficient charge, whereas overcharge was observed to be even beneficial to exergy efficiency under the condition of ensuring the maximum COP. In addition, insufficient refrigerant charging seriously affected the irreversible losses in the indoor and outdoor heat exchangers, whereas slight overcharge had little effect on the component exergy efficiency. Finally, the need to improve the CO2 compressor efficiency to enhance the system performance was revealed.


2020 ◽  
Vol 82 (5) ◽  
Author(s):  
Andriyanto Setyawan

Obstructions of air flow in the outdoor unit could block the condenser air flow and reduce its heat rejection As a result, it could decrease the performance of a room air conditioning system. The paper presents the effects of the air flow obstruction of a condensing unit on the performance of a split-type air conditioner with refrigerant R410A. The study was conducted experimentally by employing front and side obstructions with varied distance from the condensing unit. The front obstruction of 100 cm height was applied at varied distance from 10 cm to 100 cm, while the side obstruction of the same height was applied at distance of 5, 10, and 15 cm. The presence of air flow obstructions results in the decrease of cooling capacity and coefficient of performance (COP). On the other hand, it increases the input power of the AC unit. From the experiment, it is obvious that the distance of front obstruction of 10 cm results in the reduction of cooling capacity by 46% and COP by 56%. It is also revealed that the distance of the front obstruction of 50 cm or more has no significant effect for the performance of the air conditioning unit. In addition, the side obstructions have the less significant effect than that of the front obstruction.


2013 ◽  
Vol 388 ◽  
pp. 101-105 ◽  
Author(s):  
Kasni Sumeru ◽  
Nasution Henry ◽  
Farid Nasir Ani

This paper presents a numerical approach for determining the motive nozzle and constant-area of an ejector as an expansion device, based on cooling capacity of the split-type air conditioner using R22 as working fluid. The use of an ejector as an expansion device in split-type air conditioner can enhance the coefficient of performance (COP) system. Typically, the split-type air conditioner may be installed on the geographical area with moderate or high outdoor air temperature using capillary tube. For this reason, the motive nozzle and constant-area diameters of the ejector must be designed according to these conditions. The diameters of the ejector are crucial in improving the COP. The results showed that the motive nozzle diameter is constant (1.14 mm) with variations of the condenser temperature, whereas the constant-area diameter decreases as the condenser temperature increases.


Author(s):  
CP Jawahar

This paper presents the energy analysis of a triple effect absorption compression (hybrid) cycle employing ammonia water as working fluid. The performance parameters such as cooling capacity and coefficient of performance of the hybrid cycle is analyzed by varying the temperature of evaporator from −10 °C to 10 °C, absorber and condenser temperatures in first stage from 25 °C to 45 °C, degassing width in both the stages from 0.02 to 0.12 and is compared with the conventional triple effect absorption cycle. The results of the analysis show that the maximum cooling capacity attained in the hybrid cycle is 472.3 kW, at 10 °C evaporator temperature and first stage degassing width of 0.12. The coefficient of performance of the hybrid cycle is about 30 to 65% more than the coefficient of performance of conventional triple effect cycle.


2018 ◽  
Vol 225 ◽  
pp. 02013
Author(s):  
Mohd Hazwan Yusof ◽  
Sulaiman Mohd Muslim ◽  
Muhammad Fadhli Suhaimi ◽  
Mohamad Firdaus Basrawi

To maintain the temperature setup on an air conditioner, the compressor will use more or less energy based on the outdoor temperature. Therefore, there is a need to understand the performance of the air conditioner if the outdoor temperature is varied. In this research, a used small capacity split-unit air conditioner using R-22 refrigerant is used to study the effect of outdoor temperature on the performance of the air conditioner. From the results, it can be understood that lower outdoor temperature requires less work from the compressor. The cooling capacity and coefficient of performance drop as the outdoor temperature increases.


2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Yousuf Alhendal ◽  
Abdalla Gomaa ◽  
Gamal Bedair ◽  
Abdulrahim Kalendar

The energy and exergy of low-global warming potential (GWP) refrigerants were investigated experimentally and theoretically. Refrigerants with a modest GWP100 of  ≤ 150 can be sufficient for bringing down emissions which were concerned for the automotive air-conditioning system. Three types of low-GWP refrigerants, R152a, R1234yf, and R1234ze(E), were examined with particular reference to the current high-GWP of R134a. The effect of different evaporating and condensing temperatures in addition to compressor speed was considered. The purpose was to bring a clear view of the performance characteristics of possible environment friendly alternatives of R134a. The analysis was carried out with compressor power, cooling capacity, coefficient of performance, exergy destruction, and exergy efficiency. It was noted that the total exergy destruction of R1234yf was reduced by 15% compared to that of R134a. The refrigerant R1234ze(E) has the highest energetic and exergetic performance compared with the other investigated refrigerants.


2014 ◽  
Vol 699 ◽  
pp. 828-833 ◽  
Author(s):  
Sumeru ◽  
Markus ◽  
Farid Nasir Ani ◽  
Henry Nasution

Air conditioning system consumes approximately 50% of the total energy consumption of buildings. Split-type air conditioner is the most widely used in residential and commercial buildings. As a result, enhancement on the performance of the air conditioners will yield a significant energy savings. The use of ejector as an expansion device on the split-type air conditioners is one method to increase the system performance. Exergy analysis on a split-type air conditioner uses an ejector as an expansion device at room and outdoor temperatures of 24 °C and 34 °C, respectively, yielded the percentage of exergy reduction up to 40.6%. Also, the exergy losses on in the compressor had the highest impact on the performance improvement of the split-type air conditioner.


2011 ◽  
Vol 19 (01) ◽  
pp. 57-68 ◽  
Author(s):  
MIGUEL PADILLA

Commercial multiple evaporators variable refrigerant flow (VRF) HVAC systems present many advantages such as being energy saving and the capability of adjusting refrigerant mass flow rate according to the change of high rises occurrence. This paper deals with an experimental control volume exergy analysis in a VRF air conditioning system. The experimental results show that the brunt of the total exergy destroyed in the whole system occurs in the outdoor unit, where the exergy destroyed in the condenser is more important. The values of coefficient of performance (COP) obtained for the tests increase as the system reaches operational conditions imposed in every indoor unit zone. The VRF system analyzed is highly sensitive to the action of the constant speed compressor. The use of an inverter compressor improves the system performance by adjusting the power consumption according to the cooling load in the evaporators.


Sign in / Sign up

Export Citation Format

Share Document