scholarly journals Towards arresting reinforced concrete corrosion – a review

2018 ◽  
Vol 199 ◽  
pp. 05001
Author(s):  
Christian Christodoulou ◽  
Chris Goodier ◽  
Gareth Glass

This work reviews developments in the understanding of chloride induced corrosion of steel in concrete from both a kinetic and thermodynamic perspective. Corrosion damage is at least in part attributed to the production of acid at sites of corrosion initiation. Solid phase inhibitors provide a reservoir of hydroxyl ions to inhibit damage. Pit re-alkalisation is identified as an important protective effect in electrochemical treatments used to arrest corrosion. A process like pit re-alkalisation is achieved more easily by impressing current from sacrificial anodes using a power supply which may then be followed by low maintenance galvanic protection to prevent local acidification. Methods for monitoring the steel corrosion rate in electrochemically treated reinforced concrete have been developed and used to assess corrosion risk. Some of these concepts have been adopted in the recent international standard on cathodic protection, ISO 12696:2016, some of the amendments of which are considered in the work presented here.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fanxiu Chen ◽  
Zuquan Jin ◽  
Endong Wang ◽  
Lanqin Wang ◽  
Yudan Jiang ◽  
...  

AbstractConcrete cracking caused by corrosion of reinforcement could significantly shorten the durability of reinforced concrete structure. It remains critical to investigate the process and mechanism of the corrosion occurring to concrete reinforcement and establish the theoretical prediction model of concrete expansion force for the whole process of corrosion cracking of reinforcement. Under the premise of uniform corrosion of reinforcing steel bars, the elastic mechanics analysis method is adopted to analyze the entire process starting from the corrosion of steel bars to the cracking of concrete due to corrosion. A relationship model between the expansion force of corrosion of steel bars and the surface strain of concrete is established. On the cuboid reinforced concrete specimens with square cross-sections, accelerated corrosion tests are carried out to calibrate and verify the established model. The model can be able to estimate the real-time expansion force of reinforced concrete at any time of the whole process from the initiation of steel corrosion to the end of concrete cracking by measuring the surface strain of concrete. It could be useful for quantitative real-time monitoring of steel corrosion in concrete structures.


Author(s):  
Petr Konečný ◽  
Petr Lehner ◽  
David Pustka

The paper is focused on the model of the effect of delayed chloride exposure on the chloride induced corrosion initiation on ideal reinforced concrete bridge. The Finite Element-based numerical model is applied. The effect of concrete quality is expressed in the form of time dependent diffusion coefficient in order to evaluate the effect of concrete type as well as the effect of aging. The influence of extended chloride exposure on the corrosion initiation is introduced.


2010 ◽  
Vol 36 ◽  
pp. 176-181
Author(s):  
Xian Feng He ◽  
Shou Gang Zhao ◽  
Yuan Bao Leng

The corrosion of steel will have a bad impact on the safety of reinforced concrete structure. In severe cases, it may even be disastrous. In order to understand the impact of steel corrosion on the structure, tests are carried out to study corrosion and expansion rules of steel bars as well as the impact rules of corrosion on bond force between steel and concrete. The results show that wet and salty environment will result in steel corrosion; relatively minor corrosion will not cause expansion cracks of protection layers; when steel rust to a certain extent, it will cause cracks along the protection layer; when there exists minor corrosion in steel and the protection layer does not have expansion cracks, the bond force is still large and rapidly decreases as the corrosion rate increases.


2013 ◽  
Vol 569-570 ◽  
pp. 1124-1131 ◽  
Author(s):  
Ross O’Donovan ◽  
Brian D. O’Rourke ◽  
Kieran D. Ruane ◽  
John Justin Murphy

Anaerobic corrosion of steel reinforcement is rarely reported and limited literature is available on the subject. Corrosion of steel is an electrochemical process requiring a supply of oxygen in the presence of moisture. Steel corrosion product usually occupies a much larger volume than the un-corroded steel resulting in cracked or spalled concrete. If the supply of oxygen is restricted, black rust may be formed by the process of anaerobic corrosion. Black rust is not expansive, which makes it particularly difficult to detect in reinforced concrete. This paper presents a case study of anaerobic corrosion in the Mizen Bridge, together with an in-depth review of anaerobic corrosion of reinforcement in concrete, outlining black rust formation, characteristics and detection methods.


2015 ◽  
Vol 1124 ◽  
pp. 267-272
Author(s):  
Michal Matysík ◽  
Kristýna Timcakova

The corrosion of steel elements in reinforced concrete can cause considerable damage to civil engineering structures. Early detection of corrosion is therefore very important. Steel in concrete is protected if the concrete pH is higher than 9.6. Carbonated concrete, unfortunately, has a lower pH and this causes that the unprotected steel reinforcement begins to corrode. Nonlinear ultrasonic spectroscopy (NUS) methods shows potential to be very reliable to identify the structure defects in a wide range of materials. These methods are based on the fact that crack-induced nonlinearity makes a sensitive material impairment indicator. This paper describes the ability of one of NUS methods for monitoring steel corrosion in reinforced concrete. It studies nonlinear interaction between elastic waves and structural defects caused by corrosion of steel in concrete. For research we used concrete beams with ten millimetres thick steel rods. These beams were exposed to accelerated degradation by chlorides. The paper presents the initial results of our research.


Author(s):  
Md Daniyal ◽  
Sabih Akhtar

The steel reinforced concrete structures perform well in various environmental conditions, but structures may undergo premature damage in aggressive environments such as marine or acidic, primarily due to steel corrosion, and substantial reduction in service life occurs. This also causes huge economical loss and create safety and environmental problems. The repair and maintenance of steel reinforced concrete structures for their safety needs effective monitoring and inspection systems for evaluating the corrosion condition of steel. Since the corrosion of steel reinforcement occurs through electrochemical reactions, electrochemical methods are suitable to study the corrosion processes. In this chapter, some commonly used electrochemical techniques have been comprehensively explained. In addition, there is a critical requirement to develop effective and long-lasting techniques to control the corrosion of steel. Hence, some of the commonly used corrosion control methods have been comprehensively described in this chapter.


2020 ◽  
Author(s):  
Charis Apostolopoulos ◽  
Konstantinos Koulouris

This chapter is devoted to the effects of steel corrosion on bond relationship between steel and concrete. One of the basic assumptions in design of reinforced concrete members is the perfect steel - concrete bond mechanism, so that strain of reinforcing bar is the same as that of the surrounding concrete and these two different materials act as one. However, corrosion of steel reinforcement consists one of the main durability problems in reinforced concrete members, downgrade the bond behavior and therefore their structural integrity. Corrosion degrades the reinforcement itself, reducing the initial cross-section of the steel bar and its mechanical properties. Furthermore, tensile stresses in surrounding concrete caused due to oxides on the corroded reinforcement, lead to the gradual development of tensile field to the surrounding concrete, with spalling of the cover concrete and loss of bond mechanism as a consequence. In this chapter, an overview of damage of reinforced concrete due to steel corrosion is given, focused on the bond mechanism; factors that play key role in the degree of bonding and, also, proposed models of bond strength loss in correlation with the surface concrete cracking due to corrosion are indicated. To conclude, the ongoing research in this area of interest is presented, based on recent scientific studies.


Sign in / Sign up

Export Citation Format

Share Document