scholarly journals Spark ignition engine modeling for in-cylinder pressure and temperature prediction using simulink

2018 ◽  
Vol 204 ◽  
pp. 04001
Author(s):  
Nike Septivani ◽  
Byan Wahyu Riyandwita

Mathematical model for four-stroke gasoline engines based on a cylinder-by-cylinder engine modeling method that incorporates physical formulas such as engine geometry and empirical formulas such as combustion duration are applied in this study. In-cylinder pressure and temperature can be calculated for gasoline four-cycle engine. Modeling is done by treating each step in the cylinder as a volume control, solving the conservation equations of energy with submodules for combustion, heat transfer and dynamic analysis. Calculations in cycles are performed at each crank angle, so that the correct angle of ignition, variations in velocity, amount of intake mass and fuel burning speed can be predicted. Adjustment for the combustion parameter such as burn duration and form factor of the Wiebe function to increase the model accuracy was performed. It is shown that the optimization of the Wiebe function parameters able to improve the sum squared error of the engine pressure estimation by 58.17% compared to the result from generalized parameter functions, and the parameter of form factor and burn duration are influential by around twice of (1.86 and 2.55 times, respectively) the efficiency factor.

Author(s):  
Yuh-Yih Wu ◽  
Bo-Chiuan Chen ◽  
Yaojung Shiao ◽  
Feng-Chi Hsieh

A motorcycle engine model in MATLAB/SIMULINK is introduced in this paper for engine design and control system design. It simulates a 125 cc single cylinder four-stroke spark ignition engine. Sub-models include: inlet/exhaust, combustion, heat transfer, friction, and work done. The method of characteristics is used for calculating the inlet and exhaust flow. Simulated results of bmep, imep, fmep, heat release rate, inlet/exhaust pressure, and cylinder pressure were compared with the experimental data. It was found that satisfactory simulation results were achieved for the proposed model.


2018 ◽  
Author(s):  
Simon Malcher ◽  
Michael Bargende ◽  
Michael Grill ◽  
Ulrich Baretzky ◽  
Hartmut Diel ◽  
...  

2014 ◽  
Vol 984-985 ◽  
pp. 957-961
Author(s):  
Vijayashree ◽  
P. Tamil Porai ◽  
N.V. Mahalakshmi ◽  
V. Ganesan

This paper presents the modeling of in-cylinder pressure variation of a four-stroke single cylinder spark ignition engine. It uses instantaneous properties of working fluid, viz., gasoline to calculate heat release rates, needed to quantify combustion development. Cylinder pressure variation with respect to either volume or crank angle gives valuable information about the combustion process. The analysis of the pressure – volume or pressure-theta data of a engine cycle is a classical tool for engine studies. This paper aims at demonstrating the modeling of pressure variation as a function of crank angle as well as volume with the help of MATLAB program developed for this purpose. Towards this end, Woschni heat release model is used for the combustion process. The important parameter, viz., peak pressure for different compression ratios are used in the analysis. Predicted results are compared with experimental values obtained for a typical compression ratio of 8.3.


Author(s):  
Fazal Um Min Allah ◽  
Caio Henrique Rufino ◽  
Waldyr Luiz Ribeiro Gallo ◽  
Clayton Barcelos Zabeu

Abstract The flex-fuel engines are quite capable of running on gasohol and hydrous ethanol. However, the in-cylinder cyclic variations, which are inherently present in spark-ignition (SI) engines, affect the performance of these engines. Therefore, a comprehensive analysis is required to evaluate the effects of in-cylinder cyclic variations of a flex-fuel engine. The experiments were carried out by using Brazilian commercial Gasohol E27 (mixture of 27% anhydrous ethanol in gasoline) and hydrous ethanol E95h (5% water by volume in ethanol) as fuels for a commercial flex-fuel spark ignition engine. A comparison between the cyclic variations of gasohol and hydrous ethanol is presented in this paper. Moreover, the effects of engine operating parameters (i.e., engine speed, engine load and relative air fuel ratio) on cyclic variations are also investigated. The acquired data of in-cylinder pressure and combustion durations are evaluated by carrying out a statistical analysis. The coefficient of variation for indicated mean effective pressure (IMEP) did not exceed the limit of 5% for all tested conditions. Higher cyclic variability of maximum in-cylinder pressure is observed for gasohol fuel and higher engine speeds. The variability of in-cylinder combustion is also evaluated with the help of different combustion stages, which are characterized by corresponding crank positions of 10%, 50% and 90% mass fractions burned.


Author(s):  
Y. See ◽  
M. Wang ◽  
J. Bohbot ◽  
O. Colin

Abstract The Species-Based Extended Coherent Flamelet Model (SB-ECFM) was developed and previously validated for 3D Reynolds-Averaged Navier-Stokes (RANS) modeling of a spark-ignited gasoline direct injection engine. In this work, we seek to extend the SB-ECFM model to the large eddy simulation (LES) framework and validate the model in a homogeneous charge spark-ignited engine. In the SB-ECFM, which is a recently developed improvement of the ECFM, the progress variable is defined as a function of real species instead of tracer species. This adjustment alleviates discrepancies that may arise when the numerical treatment of real species is different than that of the tracer species. Furthermore, the species-based formulation also allows for the use of second-order numeric, which can be necessary in LES cases. The transparent combustion chamber (TCC) engine is the configuration used here for validating the SB-ECFM. It has been extensively characterized with detailed experimental measurements and the data are widely available for model benchmarking. Moreover, several of the boundary conditions leading to the engine are also measured experimentally. These measurements are used in the corresponding computational setup of LES calculations with SB-ECFM. Since the engine is spark ignited, the Imposed Stretch Spark Ignition Model (ISSIM) is utilized to model this physical process. The mesh for the current study is based on a configuration that has been validated in a previous LES study of the corresponding motored setup of the TCC engine. However, this mesh was constructed without considering the additional cells needed to sufficiently resolve the flame for the fired case. Thus, it is enhanced with value-based Adaptive Mesh Refinement (AMR) on the progress variable to better capture the flame front in the fired case. As one facet of model validation, the ensemble average of the measured cylinder pressure is compared against the LES/SB-ECFM prediction. Secondly, the predicted cycle-to-cycle variation by LES is compared with the variation measured in the experimental setup. To this end, the LES computation is required to span a sufficient number of engine cycles to provide statistical convergence to evaluate the coefficient of variation (COV) in peak cylinder pressure. Due to the higher computational cost of LES, the runtime required to compute a sufficient number of engine cycles sequentially can be intractable. The concurrent perturbation method (CPM) is deployed in this study to obtain the required number of cycles in a reasonable time frame. Lastly, previous numerical and experimental analyses of the TCC engine have shown that the flow dynamics at the time of ignition is correlated with the cycle-to-cycle variability. Hence, similar analysis is performed on the current simulation results to determine if this correlation effect is well-captured by the current modeling approach.


Sign in / Sign up

Export Citation Format

Share Document