scholarly journals Determination of the region of the limiting states occurrence in RVS-20000 with the subsidence of the external bottom contour

2018 ◽  
Vol 239 ◽  
pp. 06002
Author(s):  
P.V. Chepur ◽  
A.A. Tarasenko ◽  
A.A. Gruchenkova

The problem of the limiting states occurrence in the structures of a vertical steel tank is investigated in this work. To study the SSS of the metal structures of the object, the authors created a numerical model of the RVS-20000 tank in the ANSYS software complex. The model considers the maximum number of elements with their geometry and connections affecting the tank SSS under non-axisymmetric loading, including beyond the elasticity of steel. Dependences between the parameters of intrinsic stiffness of the VST are obtained. The results of the finite element analysis made it possible to develop a technique for assessing the technical condition of the structure with the development of irregular subsidence of the external bottom contour. The proposed technique can be used by both operating and design organizations in making managerial decisions regarding the repair of RVS-20000 subjected to the base subsidence.

1983 ◽  
Vol 105 (2) ◽  
pp. 206-212 ◽  
Author(s):  
Hua-Ping Li ◽  
F. Ellyin

A plate weakened by an oblique penetration of a circular cylindrical hole has been investigated. The stress concentration around the hole is determined by a finite-element method. The results are compared with experimental data and other analytical works. Parametric studies of effects of angle of inclination, plate thickness, and width are performed. The maximum stress concentration factor (SCF) obtained from the finite-element analysis is higher than experimental results, and this deviation increases with the increase of angle of skewness. The major reason for this difference is attributed to the shear-action between layers parallel to the plate surface which cannot be directly included in the two-dimensional elements. An empirical formula is derived which accounts for the shear-action and renders the finite-element predictions in line with experimentally observed data.


2006 ◽  
Vol 326-328 ◽  
pp. 1463-1466
Author(s):  
Joo Shin Park ◽  
Yun Young Kim ◽  
Tetsuya Yao

The optimum design for bow structure of high tensile steel yacht belongs to the nonlinear constrained optimization problem. The determination of scantlings for the bow structure is a very important matter out of whole structural design process of a yacht. The optimum design results are produced with the use of Real-coded Micro-Genetic Algorithm including evaluation LR small craft guideline, so that they can satisfy the allowable stress criterion. In this study, the minimum weight design of bow structure on the HTS yacht was carried out based on the finite element analysis. An analysis model is a bow structure of HTS yacht with structural scantling derived from the minimum weight optimization. The weight of bow structure and the main dimensions of structural members are chosen as an objective function and design variable, respectively. Optimization results were compared with a pre-existing design. From the FE analysis results, bow structure with high tensile steel (AH40) designed by using RμGA has a volume efficiency of 19% than the design of the actual mild yacht.


2021 ◽  
pp. 72-85
Author(s):  
L. V Stepanova

In this study coefficients of the multi-parameter Williams power series expansion for the stress field in the vicinity of the central crack in the rectangular plate and in the semi-circular notched disk under bending are obtained by the use of the finite element analysis. In SIMULIA Abaqus, the finite element analysis software, the numerical solutions for these two cracked geometries are found. The rectangular plate with the central crack has the geometry similar to the geometry used in the digital photoelasticity. Numerical simulations of the same cracked specimen as in the experimental photoelasticity method are performed. The numerical solutions obtained are utilized for the determination of the coefficients of the Williams series expansion. The higher-order coefficients are extracted from the finite element method calculations implemented in Simulia Abaqus software package and the outcomes are compared to experimental values. Determination of the coefficients of the terms of this series is performed using the least squares-based regression technique known as the over-deterministic method, for which stresses data obtained numerically in SIMULIA Abaqus software are taken as inputs. The plate with a small central crack has been considered either. This kind of the cracked specimen has been utilized for comparison of coefficients of the Williams series expansion obtained from the finite element analysis with the coefficients known from the theoretical solution based on the complex variable theory in plane elasticity. It is shown that the coefficients of the Williams series expansion match with good accuracy. The higher-order terms in the Williams series expansion for the semi-circular notch disk are found.


2014 ◽  
Vol 8 (1) ◽  
pp. 107-112
Author(s):  
Wenhui Yue ◽  
Jianxin Weng ◽  
Liangpei Huang ◽  
Yongxing Zhu ◽  
Penghui Duan

Loads subjected by the boom system on the concrete pump are so complex, that fatigue cracks or fatigue fractures appear, which may lead to loss of property and casualty. However, when the concrete pump is functioning in safe condition, the damage of the boom system is reduced, thereby preventing the accidents. In order to select safe working conditions, a boom system of 37m concrete pump as research object should be adopted. The finite element analysis is carried out on the boom system based on MSC. Patran and Nastran, with regularly varying degrees, and changing trends of the maximum stresses subjected by booms with the change of degrees of booms, attained a safe condition of the boom system. Finally, taking the four kinds of typical foundation casting working conditions as example, the feasibility of using this condition to determine the safe working condition has been verified.


1988 ◽  
Vol 16 (2) ◽  
pp. 118-126 ◽  
Author(s):  
S. Parhizgar ◽  
E. M. Weissman ◽  
C. S. Chen

Abstract Accurate determination of stiffness properties of cord-rubber composites is a key to successful finite element analysis of tires. The Halpin-Tsai and similar equations which are used to determine stiffness properties of cord-rubber single plies from the stiffness properties of cord and rubber do not provide adequate accuracy. Determination of these properties from strains directly measured by the Moire technique is more appropriate. In this paper the disadvantages of Halpin-Tsai and similar equations as well as the advantages of the Moire technique for cord-rubber composites are discussed. The stiffness properties obtained using the above different methods are compared. These stiffness properties are then used in the finite element analysis of a two-ply cord-rubber strip. The results of the finite element analyses are compared with experimental data.


2006 ◽  
Vol 45 ◽  
pp. 2448-2458 ◽  
Author(s):  
L. Pardo ◽  
Miguel Algueró ◽  
K. Brebøl

Although characterization of piezoceramics from resonance is a customary technique, the works dealing with the determination of the ten elastic, dielectric and piezoelectric coefficients that are needed in the full matrix characterization of such 6mm symmetry materials are rather scarce. Even more, if the complex characterization is foreseen, thus accounting with the three types of losses, few are the methods avaliable to obtain the material linear coefficients. This work deals with such complex characterization by the use of Alemany et al. automatic iterative method. This method has been applied to the four modes of resonance that are sufficient for the purpose: (1) the length extensional mode of long rods, length poled, (2) the thickness extensional mode and (3) the radial mode of a thin disk, thickness poled, and (4) the thickness shear mode of a thin plate. Recent work of the authors has shown the limits in characterizing materials that arise from the use of the Standard shear geometry and, therefore, and alternative geometry is used here. This work presents the matrix characterization of some piezoceramics and the Finite Element Analysis (FEA) simulation based on such characterization, of the samples used as a reliability criteria of the results obtained by comparison of the experimental and simulated values at resonance of the electrical parameters.


1997 ◽  
Vol 32 (3) ◽  
pp. 183-191 ◽  
Author(s):  
J Jönsson ◽  
E Svensson ◽  
J T Christensen

A theoretical basis for quasi static determination of wheel—rail interaction forces using strain measures in the foot of the rail is given. Vlasov's theory for thin-walled beams is used in combination with continuous translational and rotational elastic supports based on smoothing out the stiffness of the rail sleepers. The smoothing out of the rotational elastic support has traditionally not been done. The use of this model is validated by the decay lengths of the problem and through finite element analysis. The finite element analysis is performed using discrete sleeper stiffness and Vlasov beam elements. The sensitivity of the measuring technique to parameter variations is illustrated and an example shows the simplicity of the proposed direct measuring technique.


2009 ◽  
Vol 76-78 ◽  
pp. 392-397 ◽  
Author(s):  
Sheng Liu ◽  
Yuan Tong Gu ◽  
Han Huang

A deconvolution method that combines nanoindentation and finite element analysis was developed to determine elastic modulus of thin coating layer in a coating-substrate bilayer system. In this method, the nanoindentation experiments were conducted to obtain the modulus of both the bilayer system and the substrate. The finite element analysis was then applied to deconvolve the elastic modulus of the coating. The results demonstrated that the elastic modulus obtained using the developed method was in good agreement with that reported in literature.


Sign in / Sign up

Export Citation Format

Share Document