scholarly journals Stability of a hydraulic telescopic cylinder subjected to generalised load by a force directed towards the positive pole

2019 ◽  
Vol 285 ◽  
pp. 00020
Author(s):  
Sebastian Uzny ◽  
Łukasz Kutrowski

The paper presents the boundary problem of the stability of a telescopic hydraulic cylinder subjected to a generalized load with a force directed to the positive pole. The boundary problem was formulated on the basis of the Hamilton principle. Numerical calculations were carried out, taking into account the influence of the parameters of the load heads (radii of loading and receiving head, length of bolt). On the basis of the numerical calculations, regions of load heads parameters were presented, at which the load bearing capacity of the analysed telescopic hydraulic cylinder is the largest from the buckling standpoint.

1999 ◽  
Vol 5 (1) ◽  
pp. 73-98 ◽  
Author(s):  
D. Van Gemert ◽  
E.-E. Toumbakari ◽  
L. Schueremans

Abstract Recent developments in injection grouts used for consolidation are proposed. Special compositious have been developed, made out of lime, cement and pozzolan. The stability, the viscosity and the mechanical properties are illustrated. Comparison is made with polymer grouts and with double injections using mineral and polymer grouts consequently. The influence of injections on the load-bearing capacity of the masonry is calculated. Some elements for the judgment of the safety and reliability of masonry structures are pointed out.


2016 ◽  
Vol 6 (2) ◽  
pp. 4-9 ◽  
Author(s):  
Aleksey O. LUKIN ◽  
Vadim Yu. ALPATOV ◽  
Dmitriy D. CHERNYSHEV

The analysis of improving ways to test for load-bearing structures - metal beams with corrugated wall was conducted. Weak places, limiting their load-bearing capacity were determined. It was found that the criterion for determining the carrying capacity of thin-walled corrugated beam is its local resistance. The author's solution to increase the local stability of the corrugated wall beams was suggested. Author's solution is to give the corrugated wall of further extruded profile of different geometry. The influence of the shape and size of punching the wall on the carrying capacity of corrugated beams was determined. The studies confirming the effectiveness of the proposed constructive solutions increase the stability of the corrugated wall are conducted. Preliminary assessment of the degree of increase of the bearing capacity of the beam by punching its wall is obtained.


2010 ◽  
Vol 150-151 ◽  
pp. 198-202
Author(s):  
Zhi Gang Yan ◽  
Yan Huang ◽  
Ming Zhe An

Reactive Powder Concrete (RPC) is a new kind of building material with high strength and other good performance. The combination of RPC and steel tube will compensate the brittleness of RPC and enhance the stability of steel tube, and the loading capacity of the RPC filled steel tube will be improved. Five RPC filled steel tube columns are designed and tested to obtain the ultimate load bearing capacity, the deformation and the strain information. During the loading process, the concrete and the steel tube of the RPC filled steel tube columns are loaded simultaneously. The loading results show that the deformation of the RPC filled steel tube columns are mainly in elastic phase before the loading capacity is up to the ultimate value. The test load decreases to be 80%~90% of the ultimate loading value and then it changes to be smooth. The failure mode of the RPC filled steel tube columns is ductile. The test loading capacity is compared with the formula from the reference. The tested ultimate load bearing capacity of the steam cured RPC filled steel tube columns is higher than the calculated value. The calculated value is safe for the engineering application. The study is useful for the research and application of RPC filled steel tube column.


2017 ◽  
Vol 1144 ◽  
pp. 3-8
Author(s):  
Jiří Celler ◽  
Jakub Dolejs ◽  
Vera Hlavata

Timber elements with an I-shaped cross-section are used as supporting elements in wall, ceiling and roof panels of light timber frames. The reinforcement of the panel (I-stud) is provided by means of glued timber composite I-shaped element consisting of a web made of a wood-based desk embedded into flanges of solid or glued laminated timber. The stability of the wall panels is usually ensured by sided board sheathing, which prevents buckling of studs in the plane of the wall or their twist. Walls with one-side board sheathing are used for some types of modern timber structures and their load bearing capacity is determined for situation when one-side sheathing burns down during fire or sheathing is not made of a load-bearing material.


Author(s):  
D. A. Prostakishina ◽  
◽  
N. D. Korsun ◽  

The article describes the process of numerical simulation of a composite symmetric section element made of thin-walled Sigma profiles operating under conditions of longitudinal compressive force with bending, taking into account the initial geometric imperfections. At numerical modeling, the main criterion of the load-bearing capacity exhaustion in case of eccentric compression is the stability loss in one of the forms. However, for thin-walled elements, the loss of local stability does not mean that the load-bearing capacity is completely exhausted, since the element continues to carry the load, but to a lesser extent. Therefore, simulation was carried out in two stages: initially, in the elastic formulation, the possible buckling modes were determined, afterwards, there was made calculation on the deformed pattern taking into account possible imperfections.


2020 ◽  
Vol 62 (1) ◽  
pp. 55-60
Author(s):  
Per Heyser ◽  
Vadim Sartisson ◽  
Gerson Meschut ◽  
Marcel Droß ◽  
Klaus Dröder

2017 ◽  
Vol 68 (1) ◽  
pp. 94-100
Author(s):  
Oana Tanculescu ◽  
Adrian Doloca ◽  
Raluca Maria Vieriu ◽  
Florentina Mocanu ◽  
Gabriela Ifteni ◽  
...  

The load-bearing capacity and fracture pattern of direct inlay-retained FRC FDPs with two different cross-sectional designs of the ponticwere tested. The aim of the study was to evaluate a new fibre disposition. Two types of composites, Filtek Bulk Fill Posterior Restorative and Filtek Z250 (3M/ESPE, St. Paul, MN, USA), and one braided polyethylene fibre, Construct (Kerr, USA) were used. The results of the study suggested that the new tested disposition of the fibres prevented in some extend the delamination of the composite on buccal and facial sides of the pontic and increased the load-bearing capacity of the bridges.


Sign in / Sign up

Export Citation Format

Share Document