scholarly journals Examination of a repetitive process control system

2019 ◽  
Vol 287 ◽  
pp. 08002
Author(s):  
Nina G. Nikolova

In the present work, the application of repetitive filters in the robust process control systems is examined. The functionality of the proposed system and the improved performance, robust performance and filtering properties has been proven.

Vestnik MEI ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 78-87
Author(s):  
Edik K. Arakelyan ◽  
◽  
Ivan A. Shcherbatov ◽  

The uncertainty of the source information is used to solve key tasks in an intelligent automated thermal process control system affects the calculation of control actions, the implementation of equipment optimal operating modes and, as a result, leads to degraded reliability. As a rule, this type of information can be qualitative (the use of expert knowledge) or quantitative in nature. In this regard, it is extremely important to reduce the impact of uncertainty. The aim of the study is to identify the types and origins of uncertainty in the source information used by an intelligent automated process control system and to develop approaches to reduce its impact on the reliability of power equipment operation. The approaches used to ensure the specified indicators of reliability, efficiency and environmental friendliness in modern intelligent automated process control systems are based on predictive strategies, according to which the technical condition of equipment and specific degradation processes are predicted. This means that various types of uncertainty can have a significant negative impact. To reduce the influence of uncertainty of the initial information that affects the reliability of power equipment operation, the use of artificial neural networks is proposed. Their application opens the possibility to predict the occurrence of equipment defects and failures based on retrospective data for specified forecast time intervals. A method for reducing the impact of anomalies contained in the source information used in an intelligent process control system for energy facilities is demonstrated. Data omissions and outliers are investigated, the elimination of which reduces the impact of uncertainty and improves the quality of solving key problems in intelligent automated process control systems. Experimental studies were carried out that made it possible to identify the mathematical methods for removing omissions and anomalies in the source information in the best way. Methodological aspects of eliminating various types of uncertainty that exist in managing of power facilities by means of intelligent automated process control systems at the key stages of the power equipment life cycle are described.


1991 ◽  
Vol 01 (03) ◽  
pp. 303-326
Author(s):  
PETER P.K. CHIU ◽  
Y.S. CHEUNG

A new methodology for the specification of process control systems involving time interval information and verification of their design is proposed. The specification is based on interval logic and a time-interval operator is defined. By means of this operator, time interval information is incorporated in the specification. Thus properties that involve time intervals can be verified. Moreover, combinational and sequential processes can be specified. An application example for a process control system is demonstrated.


Author(s):  
Aleksey Sergeevich Dobrynin ◽  
Mikhail Yur'evich Gudkov ◽  
Roman Sergeevich Koynov

The continuous development of automated control systems for industrial facilities leads to the emergence of more advanced and complex control algorithms. A natural consequence of the development of control systems (CS) is the use of more complex technical means: sensors, controllers, SCADA and MES systems. Ultimately, the saturation of systems with additional software and hardware leads to a decrease in manageability in general, since software needs to be updated, equipment often fails, needs replacement, etc. Thus, approaches aimed at creating separate, autonomously functioning subsystems are becoming a thing of the past. An integrated, multi-level joint management of the entire infrastructure of the process control system is needed, from the technological facility to the technical infrastructure, which is closely tied to the facility. The article discusses the issues of constructing top-level control subsystems for the process control system, when it is necessary to control directly the software and hardware as part of the process control system. As research methods, simulation and computer modeling was used, which made it possible to evaluate the effectiveness of the proposed approaches and management methods. Also, the research results were verified through the pilot implementation of an automated incident management system based on the proposed approaches in the process of managing a complex technologically object. The novelty of the research lies in the proposed approach to incident management in automated process control systems, which makes it possible to improve the quality of management, reduce management costs, and predict (in some cases) the occurrence of new incidents and take measures to prevent them. Studies have shown the feasibility of using the proposed approach to control complex non-stationary automation systems.


Author(s):  
Irina Il'ina ◽  
Yana Sutem'eva

Questions of estimation of errors of measuring channels of automated process control systems are investigated. A method for studying measurement channel errors based on their mathematical modeling in the visual programming environment LabVIEW is proposed


1995 ◽  
Vol 415 ◽  
Author(s):  
G.S. Tompa ◽  
D. Shen ◽  
C. Zhang ◽  
I.H. Murzin

ABSTRACTA versatile control system, which uses standard commercial software and hardware has been developed and applied to control oxide (and carbide) MOCVD and CVD systems. The control system is implemented within a personal computer platform. The system operates in the real time Microsoft WindowsTM environment utilizing the full advantage of the sophisticated graphical user interfaces, dynamic data exchange, networking, and multitasking capabilities. We have used two different sets of commercial software to control and monitor system hardware. The first software set is INTOUCHTM, a Man-Machine interface software from WONDERWARETM in conjunction with Microsoft ExcelTM and I/O interface software. The second software set is LABVIEWTM, which is primarily a data acquisition control system from National Instruments, combined with Visual BasicTM. Both systems include a friendly interactive real-time windows-based user interface, an advanced process entry and recording spread sheet interface, alarm and security management systems, data display and recording, maintenance routines, and complete networking and remote operation capabilities. In addition, the configurations provide a flexible hardware interface that can directly interface to I/O cards in the PC's bus, as well as to most industrial Programmable Logic Controllers, various types of process controllers, I/O devices and other forms of hardware. Most importantly, the system can interface with any in-situ process monitor or higher level intelligent process control systems in order to optimize the process. Modules may be activated or deactivated as needed (even as part of the process). These systems have been used for home-built systems, as well as to retrofit a modified Spire SPI-MOCVDTM 500XT system. General process interaction and results will be discussed.


Author(s):  
Mikhail Yurievich Gudkov ◽  
Alexey Sergeyevich Dobrynin ◽  
Alexander Sergeyevich Koynov

The article considers the problem of the modern automated control systems which operate in the difficult conditions of constantly changing multi-factorial effects of the environment. Such systems should be considered as multi-mode, non-stationary human-technical systems, since they realize the integrated management of a complex technological object. As a rule, these systems are influenced by both environmental factors and complex man-machine mechanisms and technical means (such as communication devices with an object, programmable controllers - PLC), which constitute the control infrastructure, which ultimately leads to additional complexity and errors, additional management problems and reduced overall management quality. The approach to building an automated process control system is claimed to be based on using reference libraries and control algorithms (precedents), which are selected depending on the changing environmental conditions and the assets used, as well as on the logistics support. Despite the use of modern software and hardware in many systems, such as PLC, very often the quality of control leaves much to be desired. This is due to the fact that the control object changes over time for various reasons, and the control algorithm remains unchanged, which leads to a decrease in the efficiency of functioning of such systems. The generalized structure of the precedent process control system is described, which highlights the approach to the control of a technological object within the framework of the well-known concept of support-disturbed movement, which is suitable for building robust control systems for technological objects with substantial nonstationarity.


Sign in / Sign up

Export Citation Format

Share Document