scholarly journals TO THE QUESTION OF BUILDING PRECEDENTIAL CONTROL SYSTEMS BASED ON SUPPORT-DISTURBED MOVEMENT

Author(s):  
Mikhail Yurievich Gudkov ◽  
Alexey Sergeyevich Dobrynin ◽  
Alexander Sergeyevich Koynov

The article considers the problem of the modern automated control systems which operate in the difficult conditions of constantly changing multi-factorial effects of the environment. Such systems should be considered as multi-mode, non-stationary human-technical systems, since they realize the integrated management of a complex technological object. As a rule, these systems are influenced by both environmental factors and complex man-machine mechanisms and technical means (such as communication devices with an object, programmable controllers - PLC), which constitute the control infrastructure, which ultimately leads to additional complexity and errors, additional management problems and reduced overall management quality. The approach to building an automated process control system is claimed to be based on using reference libraries and control algorithms (precedents), which are selected depending on the changing environmental conditions and the assets used, as well as on the logistics support. Despite the use of modern software and hardware in many systems, such as PLC, very often the quality of control leaves much to be desired. This is due to the fact that the control object changes over time for various reasons, and the control algorithm remains unchanged, which leads to a decrease in the efficiency of functioning of such systems. The generalized structure of the precedent process control system is described, which highlights the approach to the control of a technological object within the framework of the well-known concept of support-disturbed movement, which is suitable for building robust control systems for technological objects with substantial nonstationarity.

Vestnik MEI ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 78-87
Author(s):  
Edik K. Arakelyan ◽  
◽  
Ivan A. Shcherbatov ◽  

The uncertainty of the source information is used to solve key tasks in an intelligent automated thermal process control system affects the calculation of control actions, the implementation of equipment optimal operating modes and, as a result, leads to degraded reliability. As a rule, this type of information can be qualitative (the use of expert knowledge) or quantitative in nature. In this regard, it is extremely important to reduce the impact of uncertainty. The aim of the study is to identify the types and origins of uncertainty in the source information used by an intelligent automated process control system and to develop approaches to reduce its impact on the reliability of power equipment operation. The approaches used to ensure the specified indicators of reliability, efficiency and environmental friendliness in modern intelligent automated process control systems are based on predictive strategies, according to which the technical condition of equipment and specific degradation processes are predicted. This means that various types of uncertainty can have a significant negative impact. To reduce the influence of uncertainty of the initial information that affects the reliability of power equipment operation, the use of artificial neural networks is proposed. Their application opens the possibility to predict the occurrence of equipment defects and failures based on retrospective data for specified forecast time intervals. A method for reducing the impact of anomalies contained in the source information used in an intelligent process control system for energy facilities is demonstrated. Data omissions and outliers are investigated, the elimination of which reduces the impact of uncertainty and improves the quality of solving key problems in intelligent automated process control systems. Experimental studies were carried out that made it possible to identify the mathematical methods for removing omissions and anomalies in the source information in the best way. Methodological aspects of eliminating various types of uncertainty that exist in managing of power facilities by means of intelligent automated process control systems at the key stages of the power equipment life cycle are described.


1991 ◽  
Vol 01 (03) ◽  
pp. 303-326
Author(s):  
PETER P.K. CHIU ◽  
Y.S. CHEUNG

A new methodology for the specification of process control systems involving time interval information and verification of their design is proposed. The specification is based on interval logic and a time-interval operator is defined. By means of this operator, time interval information is incorporated in the specification. Thus properties that involve time intervals can be verified. Moreover, combinational and sequential processes can be specified. An application example for a process control system is demonstrated.


Author(s):  
Anatolii Zhuchenko ◽  
Ruslan Osipa ◽  
Liudmyla Osipa ◽  
Lesia Ladieva

In Ukraine, the condition of surface water near industrial enterprises is extremely critical. The operation of enterprises leads to intensive water pollution with industrial and domestic wastewater. Therefore, improving the quality of treatment facilities through the introduction of automated control systems is an urgent problem. For the operation of automated control systems for typical cleaning processes, a software package is required, which is developed on the basis of appropriate algorithmic software and mathematical models of processes. To obtain them, methods of mathematical and simulation modeling and block diagram method of algorithmization were used. In order to assess the quality of the developed algorithm for controlling the process of buffer wastewater neutralization during operation, a comparison of control system operation based on this algorithm with the most successful foreign variants of neutralization control systems was made. Simulation for the average values of operating parameters Q = 75 m3 / h, CP = 75 g / l, and Ck = 2 g / l at minimum b = 0.02 g / l pH and maximum buffer value b = 0.47 g / l pH, and also with  unidirectional extreme combination of parameters Q = 50 m3 / h, CP = 100 g / l, b = 0,02 g / l pH and Q = 100 m3 / h, CP= 50 g / l, for minimum b = 0.02 g / l pH and maximum buffering value  b = 0.47 g / l pH shows that the best quality of transient processes is for the control system operating on the basis of the developed algorithm. For any combination of parameters, the transients for this control system provide better quality transients. Studies have shown that the control system based on the developed algorithm in comparison with the previously proposed systems provides better process control by reducing the time of transients and reducing the dynamic deviation of the output parameters, which improves the quality of wastewater treatment. Given the non-stationary process and high requirements for the cleaning parameters, manual control of this process is beyond the power of even an experienced operator. The developed mathematical model describing the dynamics of the wastewater neutralization reactor with buffer properties and the process control algorithm made it possible to proceed to the development of the control system software, which is necessary for the automated control of this process.


2019 ◽  
Vol 287 ◽  
pp. 08002
Author(s):  
Nina G. Nikolova

In the present work, the application of repetitive filters in the robust process control systems is examined. The functionality of the proposed system and the improved performance, robust performance and filtering properties has been proven.


Author(s):  
G. Kalimbetov ◽  
A. Toigozhinovа ◽  
W. Wojcik

Among the promising automatic control systems, logical-dynamic control systems that change both the structure and parameters of the control device using switches formed on the basis of a certain logical algorithm have proven themselves well. The use of logical algorithms as part of MACS subsystems for complex technical objects makes it possible to increase the static and dynamic accuracy of control due to purposeful qualitative and quantitative changes in the control signal. This approach will give the control system fundamentally new properties that allow to fully take into account the nature and dynamics of the movement of the control object. When developing existing logical control algorithms, the issues of their application for multi-connected and multifunctional objects control were not considered. Common to existing logical algorithms is that when switching the structure and/or changing parameters, only the dynamics of its own subsystem is taken into account, which is unacceptable in the case of multi-connected dynamic object control, since cross-links have a significant impact on the quality of control. Thus, the problem of synthesis of logical algorithms for multi-connected objects control is an actual theoretical and applied problem. Despite the considerable amount of research conducted in this area, the application of logical algorithms for complex multidimensional objects control is not sufficiently considered, and there is no unified design concept for this type of MACS, taking into account the required quality of functioning in various operating modes. In this regard, there is a need to synthesize algorithms for logical multi-connected control that form control signals in order to coordinate the actions of all separate MACS subsystems in accordance with new external conditions and operating modes. The problem under consideration determined the purpose of this work and the research objectives.


Author(s):  
Aleksey Sergeevich Dobrynin ◽  
Mikhail Yur'evich Gudkov ◽  
Roman Sergeevich Koynov

The continuous development of automated control systems for industrial facilities leads to the emergence of more advanced and complex control algorithms. A natural consequence of the development of control systems (CS) is the use of more complex technical means: sensors, controllers, SCADA and MES systems. Ultimately, the saturation of systems with additional software and hardware leads to a decrease in manageability in general, since software needs to be updated, equipment often fails, needs replacement, etc. Thus, approaches aimed at creating separate, autonomously functioning subsystems are becoming a thing of the past. An integrated, multi-level joint management of the entire infrastructure of the process control system is needed, from the technological facility to the technical infrastructure, which is closely tied to the facility. The article discusses the issues of constructing top-level control subsystems for the process control system, when it is necessary to control directly the software and hardware as part of the process control system. As research methods, simulation and computer modeling was used, which made it possible to evaluate the effectiveness of the proposed approaches and management methods. Also, the research results were verified through the pilot implementation of an automated incident management system based on the proposed approaches in the process of managing a complex technologically object. The novelty of the research lies in the proposed approach to incident management in automated process control systems, which makes it possible to improve the quality of management, reduce management costs, and predict (in some cases) the occurrence of new incidents and take measures to prevent them. Studies have shown the feasibility of using the proposed approach to control complex non-stationary automation systems.


Author(s):  
М.И. Дагаев ◽  
А.М. Авторханов ◽  
Х.Т. Муртазова

В статье приводится описание технологического процесса обжига керамического кирпича в туннельной печи. Приведено обоснование для внедрения автоматизированной системы управления туннельной печью и вариант структуры автоматизированной системы управления. The article describes the technological process of firing ceramic bricks of a tunnel kiln. The rationale for the introduction of an automated control system for a tunnel furnace and a variant of the structure of an automated control system are given.


Sign in / Sign up

Export Citation Format

Share Document