scholarly journals Optimization and economic assessment of renewable energy sources and their combinations for Central Europe

2019 ◽  
Vol 292 ◽  
pp. 01021
Author(s):  
Jan Skovajsa ◽  
Martin Zálešák

The article deals with the economic evaluation of investment and optimization of the renewable energy sources for family houses. For example, from the point of view of solar systems, the optimal solution is based on the specific application of it. The design is dependent on the location of the panels and ration between active aperture area and real daytime consumption. Common calculations according to actual standards often give overstated results, which also reflected in the value of the investments. The article shows the research of optimal parameters of the thermal solar system for preparing of domestic hot water. A combination of related standards and software TRNSYS are used to find optimal parameters. Thanks to created and verified simulation models, it is possible to design parameters so as to avoid under-dimensioning or over-dimensioning of the each system. Energy price is another factor affects the payback period of investments. This is affected by the used energy sources and their combination. For example, buildings that use electricity to heat water or heating have different energy charges than a building that uses natural gas. So, the aim is to find optimal solution of the combination of renewable energy sources.

2019 ◽  
Vol 85 ◽  
pp. 04006
Author(s):  
Adrian Ilie ◽  
Ion Vişa

The energy used in the built-up environment represents at least 40% of the total energy consumed, out of which, at least 60% is required for heating, cooling and domestic hot water (DHW). Within the European Union, more than 6,000 communities (i.e. over 9%) use district heating systems, the majority of which use the conversion of fossil fuels as a source of energy. This aspect, which is corroborated by the directives of the EU legislation on the use of renewable energy sources and energy performance, imposes the development of new solutions through which the existing district heating systems may be adapted to use renewable energy sources. The solar-thermal systems that are used on a large (district) scale are becoming more and more efficient from the point of view of their feasibility; however, it is almost impossible to create systems that should satisfy the thermal energy demand throughout the four seasons of the year. The hybrid solar-biomass system is becoming the applicable solution for the majority of the communities that have from this potential, since it can secure independence from the point of view of the use of thermal energy. This paper presents the design stages for the implementation of the hybrid solar-biomass systems with a view to identifying the optimal solutions for systems to be integrated into an existing district heating system. A case study (Taberei District in Odorheiu Secuiesc City), which provides a detailed description of the feasible technical solutions, is presented.


2018 ◽  
Vol 210 ◽  
pp. 02023
Author(s):  
Jan Skovajsa ◽  
Martin Zálešák

The article deals with the economic evaluation of investment and optimization of the solar water heating system for family houses. From the point of view of solar systems, the optimal solution is based on the specific application of it. The design is dependent on the location of solar thermal collectors and ration between active aperture area and real daytime consumption. Common calculations according to actual standards often give overstated results, which also reflected in the value of the investments. The article presents the research of optimal parameters of the thermal solar system for preparing of domestic hot water. A combination of related standards and software TRNSYS are used to find optimal parameters. Thanks to created and verified simulation models, it is possible to design parameters so as to avoid under-dimensioning or over-dimensioning of the solar system. Energy price is another factor affects the payback period of investments. This is affected by the used energy sources and their combination. For example, buildings that use electricity to heat water or heating have different energy charges than a building that uses natural gas. So, the aim is to find technically and economically efficient solution.


2021 ◽  
pp. 130072
Author(s):  
Marija Koričan ◽  
Maja Perčić ◽  
Nikola Vladimir ◽  
Vladimir Soldo ◽  
Ivana Jovanović

2021 ◽  
Vol 295 ◽  
pp. 04005
Author(s):  
Sergey Batukhtin ◽  
Andrey Batukhtin ◽  
Marina Baranovskaya

According to experts’ forecasts, by 2040 the global demand for energy will increase by 37%, and renewable energy sources in the next 20 years will become the fastest growing segment of the world energy, their share in the next decade will grow by about one and a half times. Solar energy is the fastest growing industry among all non-conventional energy sources and is gaining the highest rates of development in comparison with other renewable energy sources. In this article, the authors provide an overview of the technologies that increase the efficiency and productivity of solar panels, only the investigated methods are described that can speed up the process of introducing solar energy instead of traditional. All the methods described can increase the efficiency of systems that are based on the use of the sun as the main source of energy. The authors presented and described the scheme of a solar-air thermal power plant, which will improve energy efficiency through the use of a regenerative air solar collector with increased heat transfer efficiency. Strengthening will be achieved through the use of hemispherical depressions on the surface that receives solar radiation. A schematic diagram is given and the principle of operation of such a solar collector is described in detail. A comparative calculation of the intensification of the solar collector with the use of depressions and without the use as modernization was carried out, on the basis of which a conclusion was made about the efficiency of using this type of solar collector and the economic effect from the application of this method. A description of the method for calculating the solar collector is given, thanks to which this development can be used and implemented in existing heating and hot water supply systems.


2019 ◽  
Vol 3 (2) ◽  

In the recent attempts to stimulate alternative energy sources for heating and cooling of buildings, emphasise has been put on utilisation of the ambient energy from ground source heat pump systems (GSHPs) and other renewable energy sources. Exploitation of renewable energy sources and particularly ground heat in buildings can significantly contribute towards reducing dependency on fossil fuels. The study was carried out at the Energy Research Institute (ERI), between September 2016 and November 2017. This paper highlights the potential energy saving that could be achieved through use of ground energy source. The main concept of this technology is that it uses the lower temperature of the ground (approximately <32°C), which remains relatively stable throughout the year, to provide space heating, cooling and domestic hot water inside the building area. The purpose of this study, however, is to examine the means of reducing of energy consumption in buildings, identifying GSHPs as an environmental friendly technology able to provide efficient utilisation of energy in the buildings sector, promoting the use of GSHPs applications as an optimum means of heating and cooling, and presenting typical applications and recent advances of the DX GSHPs. It is concluded that the direct expansion of GSHP are extendable to more comprehensive applications combined with the ground heat exchanger in foundation piles and the seasonal thermal energy storage from solar thermal collectors. This study highlights the energy problem and the possible saving that can be achieved through the use of the GSHP systems. This article discusses the principle of the ground source energy, varieties of GSHPs, and various developments.


Sign in / Sign up

Export Citation Format

Share Document