scholarly journals Influence of Coolant Pressure Size on Surface Roughness when Stainless Steel Machining

2019 ◽  
Vol 299 ◽  
pp. 04002
Author(s):  
Robert Cep ◽  
Lenka Cepova ◽  
Cristina Stefana Borzan ◽  
Jiri Kasal ◽  
Marek Sadilek ◽  
...  

The paper is focused on the influence of the coolant pressure on the surface roughness of the workpiece when machining stainless steels. The components were machined on a STAR SR-32J dual spindle machining center and an external cooling unit HYTEK CHAV 160/150-AF-F-OL was used for cooling. Two stainless steel components were investigated, namely the gas control valve rod and the high-pressure control valve housing, which require low roughness Ra after machining (less than 0.375 and 0.25 micrometers respectively). The first component was tested at 8 different pressures in the range of 150 bar - 10 bar and the second component at 4 different pressures in the range of 120 bar - 10 bar. The roughness parameters were measured by the contact method using the MITUTOYO Surftest SJ-410 Roughness Tester and the Alicona InfiniteFocus optical microscope. Based on these sample input parameters, it was evaluated howmuch the pressure affects the surface quality or suggested its reduction due to the high cost of operation of the external high-pressure equipment.

2021 ◽  
Vol 271 ◽  
pp. 01018
Author(s):  
Jinlong Wang ◽  
Ang Song ◽  
Yanchang Kang

The high-pressure control valve of Weifang power generation Co. LTD unit one turbine happens to jitter during operation, especially in the low opening action, the jitter is more frequent. This situation is serious for the safety and stability of generating unit. This paper analyzes the cause of the high-pressure control valve jitter and formulates effective reconstruction plans. After the reform of the high-pressure control valve, it can maintain stable and normal regulation to ensure the safety and stability of the generating unit.


2020 ◽  
Vol 68 (3) ◽  
pp. 652
Author(s):  
DeepakK Jha ◽  
AbhijeetS Barath ◽  
OmP Thakur ◽  
Mayank Garg ◽  
Suryanarayanan Bhaskar

2016 ◽  
Vol 840 ◽  
pp. 315-320 ◽  
Author(s):  
Afifah Mohd Ali ◽  
Norazharuddin Shah Abdullah ◽  
Manimaran Ratnam ◽  
Zainal Arifin Ahmad

The purpose of this research is to find the effects of cutting speed on the performance of the ZTA ceramic cutting tool. Three types of ZTA tools used in this study which are ZTA-MgO(micro), ZTA-MgO(nano) and ZTA-MgO-CeO2. Each of them were fabricated by wet mixing the materials, then dried at 100°C before crushed into powder. The powder was pressed into rhombic shape and sintered at 1600°C at 4 hours soaking time to yield dense body. To study the effect of the cutting speed on fabricated tool, machining was performed on the stainless steel 316L at 1500 to 2000 rpm cutting speed. Surface roughness of workpiece was measured and the tool wears were analysed by using optical microscope and Matlab programming where two types of wear measured i.e. nose wear and crater wear. Result shows that by increasing the cutting speed, the nose wear and crater wear increased due to high abrasion. However, surface roughness decreased due to temperature rise causing easier chip formation leaving a good quality surface although the tool wear is increased.


Sign in / Sign up

Export Citation Format

Share Document