Experimental Observation on the Uniaxial Cyclic Deformation Behaviour of TA16 Titanium Alloy

2011 ◽  
Vol 415-417 ◽  
pp. 2318-2321 ◽  
Author(s):  
Qian Hua Kan ◽  
Wen Yi Yan ◽  
Guo Zheng Kang ◽  
Su Juan Guo

The cyclic deformation including the ratcheting of TA16 titanium alloy was investigated experimentally at room temperature. Experimental results under symmetrical strain-controlled cyclic loading with various strain amplitudes show that the responded stress amplitude keeps almost unchanged with the increasing number of cycles. It is concluded that TA16 titanium alloy can be regarded as a cyclic stable material. Remarkable ratcheting was also observed under asymmetrical stress-controlled cyclic loading, i.e., ratcheting strain increases with the increasing number of cycles. The ratcheting strain strongly depends on the stress level and increases with the increase of applied mean stress, stress amplitude and stress ratio. These findings are useful to reasonably model the cyclic deformation of TA16 titanium alloy.

2016 ◽  
Vol 853 ◽  
pp. 246-250 ◽  
Author(s):  
Tao Fang ◽  
Qian Hua Kan ◽  
Guo Zheng Kang ◽  
Wen Yi Yan

Experiments on U75V rail steel were carried out to investigate the cyclic feature, ratcheting behavior and low-cycle fatigue under both strain- and stress-controlled loadings at room temperature. It was found that U75V rail steel shows strain amplitude dependent cyclic softening feature, i.e., the responded stress amplitude under strain-controlled decreases with the increasing number of cycles and reaches a stable value after about 20th cycle. Ratcheting strain increases with an increasing stress amplitude and mean stress, except for stress ratio, and the ratcheting strain in failure also increases with an increasing stress amplitude, mean stress and stress ratio. The low-cycle fatigue lives under cyclic straining decrease linearly with an increasing strain amplitude, the fatigue lives under cyclic stressing decrease with an increasing mean stress except for zero mean stress, and decrease with an increasing stress amplitude. Ratcheting behavior with a high mean stress reduces fatigue life of rail steel by comparing fatigue lives under stress cycling with those under strain cycling. Research findings are helpful to evaluate fatigue life of U75V rail steel in the railways with passenger and freight traffic.


2013 ◽  
Vol 690-693 ◽  
pp. 1713-1717 ◽  
Author(s):  
Hong Qiang Guo ◽  
Hua Li ◽  
Yi Chen Sun ◽  
Wei Wei Yu

In this paper, a series of bending cyclic tests under stress controlled were conducted at room temperature on Zircaloy-4 (Zr-4) to investigate its bending ratcheting behavior. The effects of mean stress and stress amplitude on the bending ratcheting behavior were experimentally studied, respectively. The experimental results show that the ratcheting strain of the material is very sensitive to mean stress and stress amplitude. It can be concluded that ratcheting strain level increases with increasing mean stress and stress amplitude.


2019 ◽  
Vol 300 ◽  
pp. 08004
Author(s):  
Cainã Bemfica ◽  
Edgar Mamiya ◽  
Fábio Castro

This work investigates the axial-torsional fatigue and cyclic deformation behaviour of 304L stainless steel at room temperature. Four fully reversed strain-controlled loading paths (axial, torsional, proportional axial-torsional, and 90º out-of-phase axial-torsional) and a fully-reversed shear strain-controlled with static axial stress loading were investigated. For axial, torsional, torsional with static stress and few proportional experiments, an initial cyclic softening was followed by secondary hardening related to martensitic transformation. Secondary hardening was not observed for non-proportional loading nor for some proportional experiments. The influence of the non-stabilized cyclic deformation behaviour on the fatigue life estimates of two multiaxial critical plane fatigue models (Smith–Watson–Topper and Fatemi–Socie) was investigated. Life estimates based on the stress-strain hysteresis loops corresponding to the maximum softening and to the half-life were similar for the two models.


1986 ◽  
Vol 53 (6) ◽  
pp. 887-896 ◽  
Author(s):  
Han-Ryong Pak ◽  
Lieh-Ming Hsiung ◽  
Masaharu Kato

2021 ◽  
Author(s):  
Prasanth Chandrasekar

Engineering materials in their service life undergo symmetric or asymmetric fatigue loading, which leads to fatigue damage in the material. Ratcheting damage is due to the application of mean stress under cyclic loading condition. From deformation behavior perspective, application of mean stress under stress-controlled fatigue loading gives rise to accumulation of plastic strain in the material. Ratcheting strain increases with an increase in applied mean stress and stress amplitude. In addition, ratcheting behavior will increase in cyclic damage with the rise in strain accumulation and it can be illustrated by a shift in the hysteresis loop towards large plastic strain amplitudes. This study focuses on the ratcheting behavior of different steel materials under uniaxial cyclic loading condition and suggests a suitable method to arrest ratcheting by loading the materials at zero ratcheting strain rate condition with specified mean stress and stress amplitudes. The three dimensional surface is created with stress amplitude, mean stress and ratcheting strain rate for different steel materials. This represents a graphical surface zone to study the ratcheting strain rates for various mean stress and stress amplitude combinations.


2007 ◽  
Vol 353-358 ◽  
pp. 555-558 ◽  
Author(s):  
Guo Zheng Kang ◽  
Zhao Li ◽  
Yu Jie Liu

The cyclic deformation behaviors of 42CrMo steel with different heat treatments were observed by uniaxial cyclic straining and stressing tests at room temperature. The cyclic softening/ hardening features of the tempered or annealed 42CrMo steel and their effects on the uniaxial ratcheting produced in asymmetrical cyclic stressing were discussed. It is concluded that the tempered 42CrMo steel shows significantly cyclic softening feature, but the annealed one is cyclic stabilizing. Different ratcheting behaviors are also observed. For the tempered 42CrMo steel, a special tertiary ratcheting behavior is observed and the previous cyclic straining greatly accelerates the evolution of ratcheting strain in subsequent cyclic stressing. In contrast, the annealed sample presents a stabilized ratcheting with nearly constant ratcheting strain rate after certain cycles, and the previous cyclic straining slightly influences the ratcheting in subsequent cyclic stressing.


2016 ◽  
Vol 879 ◽  
pp. 1311-1316 ◽  
Author(s):  
Roman Mishnev ◽  
Nadezhda Dudova ◽  
Rustam Kaibyshev

The influence of cyclic loading on microstructure and hardness of a 10%Cr steel with 3%Co and 0.008%B was examined at room temperature and total strain amplitudes of ±0.25% and ±0.6%. Low cycle fatigue (LCF) curves exhibit a stress peak after a few cycles. Hardening is attributed to an increase in dislocation density; no changes in lath size were observed. Then stress tends to decrease monotonically with number of cycles that is indicative for material softening. At εac =±0.25%, strain softening is attributed to decreasing dislocation density and lath coarsening under LCF, whereas at εac =±0.6%, the knitting reaction between dislocations comprising lath boundaries and trapped lattice dislocation leading to the transformation of lath boundaries to subboundaries is a reason for hardness decrease and strain-induced subgrain coarsening.


Sign in / Sign up

Export Citation Format

Share Document