scholarly journals Configurational forces in cyclic metal plasticity

2019 ◽  
Vol 300 ◽  
pp. 08009
Author(s):  
Aris Tsakmakis ◽  
Michael Vormwald

The configurational force concept is known to describe adequately the crack driving force in linear fracture mechanics. It seems to represent the crack driving force also for the case of elastic-plastic material properties. The latter has been recognized on the basis of thermodynamical considerations. In metal plasticity, real materials exhibit hardening effects when sufficiently large loads are applied. Von Mises yield function with isotropic and kinematic hardening is a common assumption in many models. Kinematic and isotropic hardening turn out to be very important whenever cyclic loading histories are applied. This holds equally regardless of whether the induced deformations are homogeneous or non-homogeneous. The aim of the present paper is to discuss the effect of nonlinear isotropic and kinematic hardening on the response of the configurational forces and related parameters in elastic-plastic fracture problems.

2009 ◽  
Vol 417-418 ◽  
pp. 297-300 ◽  
Author(s):  
R. Schöngrundner ◽  
Otmar Kolednik ◽  
Franz Dieter Fischer

This paper deals with the determination of the crack driving force in elastic-plastic materials and its correlation with the J-Integral approach. In a real elastic-plastic material, the conventional J-integral cannot describe the crack driving force. This problem has been solved in Simha et al. [1], where the configurational force approach was used to evaluate in a new way the J-integral under incremental plasticity conditions. The crack driving force in a homogeneous elastic-plastic material, Jtip, is given by the sum of the nominally applied far-field crack driving force, Jfar, and the plasticity influence term, Cp, which accounts for the shielding or anti-shielding effect of plasticity. In this study, the incremental plasticity J-integral and the crack driving force are considered for a stationary and a growing crack.


2009 ◽  
Vol 19 (12) ◽  
pp. 2231-2262 ◽  
Author(s):  
JENS FREHSE ◽  
DOMINIQUE LÖBACH

For a flat Dirichlet boundary we prove that the first normal derivatives of the stresses and internal parameters are in L∞(0, T; L1+δ) and in L∞(0, T; H½-δ) up to the boundary. This deals with solutions of elastic–plastic flow problems with isotropic or kinematic hardening with von Mises yield function. We show that the elastic strain tensor ε(u) of three-dimensional plasticity with isotropic hardening is contained in the space [Formula: see text] and in L∞(0,T;H4-δ) up to the flat Dirichlet boundary. We obtain related results concerning traces of ε(u). In the case of kinematic hardening we present a simple proof of the [Formula: see text] inclusion of the elastic strain tensor.


2008 ◽  
Vol 56 (9) ◽  
pp. 2876-2895 ◽  
Author(s):  
N SIMHA ◽  
F FISCHER ◽  
G SHAN ◽  
C CHEN ◽  
O KOLEDNIK

Author(s):  
Zijian Zhao ◽  
Abdel-Hakim Bouzid

Abstract SS316L finned tubes are becoming very popular in high-pressure gas exchangers and particularly in CO2 cooler applications. Due to the high-pressure requirement during operation, these tubes require an accurate residual stress evaluation during the expansion process. Indeed, die expansion of SS tubes creates not only high stresses when combined with operation stresses but also micro-cracks during expansion when the expansion process is not very well controlled. This research work aims at studying the elastic-plastic behavior and estimating the residual stress states by modeling the die expansion process. The stresses and deformations of the joint are analyzed numerically using the finite element method. The expansion and contraction process is modeled considering elastic-plastic material behavior for different die sizes. The maximum longitudinal, tangential and contact stresses are evaluated to verify the critical stress state of the joint during the expansion process. The importance of the material behavior in evaluating the residual stresses using kinematic and isotropic hardening is addressed.


2011 ◽  
Vol 415-417 ◽  
pp. 2130-2133 ◽  
Author(s):  
Xiao Jiu Feng ◽  
Li Fu Liang ◽  
Si Yuan Wang

This paper adopts Macroscopic Phenomenological Method to establish constitutive relation. In order to maintain better approximation, it adopts testing data of typical stress path, testing data of uniaxial tension and torsion test. Applying multidimensional incremental theory under general loading law, on the base of certain loading function of stress space and loading function of strain space, this essay drives heat-elasto-plastic constitutive relation of heated isotropic hardening material under the condition of elasto-plastic decoupling. Meanwhile, this constitutive relation also suits for kinematic hardening material and elastic-perfectly plastic material. This paper builds a means of driving constitutive relation of multidimensional incremental theory under general loading law in strain space.


2012 ◽  
Vol 249-250 ◽  
pp. 927-930
Author(s):  
Ze Yu Wu ◽  
Xin Li Bai ◽  
Bing Ma

In finite element calculation of plastic mechanics, isotropic hardening model, kinematic hardening model and mixed hardening model have their advantages and disadvantages as well as applicability area. In this paper, by use of the tensor analysis method and mixed hardening theory in plastic mechanics, the constitutive relation of 3-D mixed hardening problem is derived in detail based on the plane mixed hardening. Numerical results show that, the proposed 3-D mixed hardening constitutive relation agrees well with the test results in existing references, and can be used in the 3-D elastic-plastic finite element analysis.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Biplab Chatterjee ◽  
Prasanta Sahoo

The present study considers the effect of strain hardening on elastic-plastic contact of a deformable sphere with a rigid flat under full stick contact condition using commercial finite element software ANSYS. Different values of tangent modulus are considered to study the effect of strain hardening. It is found that under a full stick contact condition, strain hardening greatly influences the contact parameters. Comparison has also been made between perfect slip and full stick contact conditions. It is observed that the contact conditions have negligible effect on contact parameters. Studies on isotropic and kinematic hardening models reveal that the material with isotropic hardening has the higher load carrying capacity than that of kinematic hardening particularly for higher strain hardening.


2009 ◽  
Vol 01 (04) ◽  
pp. 631-645 ◽  
Author(s):  
ELHASSAN BOUDAIA ◽  
LAHBIB BOUSSHINE ◽  
GERY DE SAXCE ◽  
ALI CHAABA

We present a theoretical and numerical analysis of incremental elasto-plastic problems based on the meshless method and the mathematical programming. This study is done on an elasto-plastic material with isotropic hardening obeying to the von Mises criterion. The transformation method is adopted to impose the essential boundary condition. The Coulomb's dry friction contact is used to implement the frictional boundary conditions and is formulated by the bipotential method which leads to only one principle of minimum in displacement. The numerical analysis results obtained by the method proposed in this paper are in good agreement with those obtained by FEM.


Author(s):  
David J. Dewees

The updating and re-writing of the ASME Boiler and Pressure Vessel Code, Section VIII Division 2 (2007) [1] has introduced several new and unique features. One of these features is the inclusion of specific materials data for use in elastic-plastic analysis of pressure vessel components. Both monotonic and cyclic stress strain curve models are provided, with supporting constants for a range of materials and temperatures. The elastic-perfectly plastic material model has been used in commercial Finite Element (FE) codes for many years to perform limit load and ratcheting analyses. The new material models and data of Section VIII Division 2 (S8D2) include strain hardening and are intended for use in deformation assessments, and for determining cyclic plastic strain ranges in fatigue evaluations. This paper presents one possible implementation of the Code models and data into a standard cyclic hardening model; the multiple backstress, nonlinear kinematic-hardening model of Chaboche, as implemented in the commercial Finite Element program Abaqus, versions 6.8 and later.


1993 ◽  
Vol 28 (3) ◽  
pp. 187-196 ◽  
Author(s):  
S J Hardy ◽  
A R Gowhari-Anaraki

The finite element method is used to study the monotonic and cyclic elastic-plastic stress and strain characteristics of hollow tubes with axisymmetric internal projections subjected to monotonic and repeated axial loading. Two geometries having low and high elastic stress concentration factors are considered in this investigation, and the results are complementary to previously published data. For cyclic loading, three simple material behaviour models, e.g., elastic-perfectly-plastic, isotropic hardening, and kinematic hardening are assumed. All results have been normalized with respect to material properties so that they can be applied to all geometrically similar components from other materials which may be represented by the same material models. Finally, normalized maximum monotonic strain and steady state strain range, predicted in the present investigation and from previously published data, are plotted as a function of the nominal load for different material hardening assumptions and different elastic stress concentration factors. These plots can be used in the low cycle fatigue design of such geometrically similar components.


Sign in / Sign up

Export Citation Format

Share Document