scholarly journals Removal of heavy metals from a contaminated soil using phytoremediation

2020 ◽  
Vol 305 ◽  
pp. 00061
Author(s):  
Georgiana Luiza Arnold Tatu ◽  
Nicolae Valentin Vladut ◽  
Iulian Voicea ◽  
Nicoleta Alexandra Vanghele ◽  
Mirabela Augustina Pruteanu

Environment pollution with heavy metals, can be a cause of the industrialization activities and technological processes, and has become an important issue. Soil contamination due to natural or anthropogenic causes (such as mining, smelting, warfare and military training, electronic industries, fossil fuel consumption, waste disposal, agrochemical use and irrigation) is a major environmental hazard. Various remediation techniques have been highlighted to clean or restore soils contaminated with heavy metals such physical, chemical or biological. Phytoremediation is a relatively new approach to removing contaminants from the environmental. It may be defined as the use of plants to remove, destroy or sequester hazardous substances from environmental. This paper is a review of removal of heavy metals from a contaminated soil using phytoremediation.

2018 ◽  
Vol 26 (2) ◽  
pp. 156-168 ◽  
Author(s):  
C.U. Emenike ◽  
B. Jayanthi ◽  
P. Agamuthu ◽  
S.H. Fauziah

Environmental deterioration is caused by a variety of pollutants; however, heavy metals are often a major issue. Development and globalization has now also resulted in such pollution occurring in developing societies, including Africa and Asia. This review explores the geographical outlook of soil pollution with heavy metals. Various approaches used to remedy metal-polluted soils include physical, chemical, and biological systems, but many of these methods are not economically viable, and they do not ensure restoration without residual effects. This review evaluates the diverse use of plants and microbes in biotransformation and removal of heavy metals from contaminated soil. Mechanisms on how natural processes utilizing plants (phytoremediation) and microorganisms (bioremediation) remove or reduce heavy metals from soil at various levels are presented. This review concludes that remediation technologies are necessary for the recovery of metal-contaminated environments and the prevention of continuous environmentally toxic impacts on living organisms.


1999 ◽  
Vol 18 (1) ◽  
pp. 50-54 ◽  
Author(s):  
Catherine N. Mulligan ◽  
Raymond N. Yong ◽  
Bernard F. Gibbs

Processes ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 111 ◽  
Author(s):  
Tawfiq J. H. Banch ◽  
Marlia M. Hanafiah ◽  
Abbas F. M. Alkarkhi ◽  
Salem S. A. Amr ◽  
Nurul U. M. Nizam

Leachate is a complex liquid that is often produced from landfills, and it contains hazardous substances that may endanger the surrounding environment if ineffectively treated. In this work, four leachate treatment applications were examined: combined leachate/palm oil mill effluent (POME) (LP), leachate/tannin (LT), pre-(leachate/tannin) followed by post-(leachate/POME) (LT/LP), and pre-(leachate/POME) followed by post-(leachate/tannin) (LP/LT). The aim of this work is to evaluate and compare the performance of these treatment applications in terms of optimizing the physicochemical parameters and removing heavy metals from the leachate. The highest efficiency for the optimization of the most targeted physicochemical parameters and the removal of heavy metals was with the LP/LT process. The results are indicative of three clusters. The first cluster involves raw leachate (cluster 1), the second contains LP and LP/LT (cluster 2), and the third also consists of two treatment applications, namely, LT and LT/LP (cluster 3). The results demonstrate that LP/LT is the most appropriate method for leachate treatment using low-cost agro-industrial materials.


Author(s):  
Kanghee Cho ◽  
Eunji Myung ◽  
Hyunsoo Kim ◽  
Cheonyoung Park ◽  
Nagchoul Choi ◽  
...  

In this study, we investigated the feasibility of using a solution of sulfuric acid and phosphoric acid as an extraction method for soil-washing to remove Cu, Pb, Zn, and As from contaminated soil. We treated various soil particles, including seven fraction sizes, using sulfuric acid. In addition, to improve Cu, Pb, Zn, and As removal efficiencies, washing agents were compared through batch experiments. The results showed that each agent behaved differently when reacting with heavy metals (Cu, Pb, and Zn) and As. Sulfuric acid was more effective in extracting heavy metals than in extracting As. However, phosphoric acid was not effective in extracting heavy metals. Compared with each inorganic acid, As removal from soil by washing agents increased in the order of sulfuric acid (35.81%) < phosphoric acid (62.96%). Therefore, an enhanced mixture solution using sulfuric acid and phosphoric acid to simultaneously remove heavy metals and As from contaminated soils was investigated. Sulfuric acid at 0.6 M was adopted to combine with 0.6 M phosphoric acid to obtain the mixture solution (1:1) that was used to determine the effect for the simultaneous removal of both heavy metals and As from the contaminated soil. The removal efficiencies of As, Cu, Pb, and Zn were 70.5%, 79.6%, 80.1%, and 71.2%, respectively. The combination of sulfuric acid with phosphoric acid increased the overall As and heavy metal extraction efficiencies from the contaminated soil samples. With the combined effect of dissolving oxides and ion exchange under combined washings, the removal efficiencies of heavy metals and As were higher than those of single washings.


2006 ◽  
Vol 54 (8) ◽  
pp. 189-195 ◽  
Author(s):  
V. Miska ◽  
H.W.H. Menkveld ◽  
L. Kuijer ◽  
M. Boersen ◽  
J.H.J.M. van der Graaf

More stringent effluent criteria will be required in the near future for the so-called priority substances listed in the Annex of the European Water Framework Directive (WFD) 2000/60/EC. This includes heavy metals, volatile and semi-volatile organic substances, pesticides and polychlorinated biphenyls. The Fraunhofer Institute suggested FHI values for these substances in water. National Dutch legislation, the Vierde Nota WaterHuishouding (NWH) introduced in 1998 ‘maximum tolerable risk concentrations’ (MTR). These include requirements for nutrients: Ptot&lt;0.15 mg/l and Ntot&lt;2.2 mg/l. The MTR values are being used until the FHI values become effective. Investigation into possible effluent polishing techniques is required in order to reach these objectives. During pilot research with tertiary denitrifying multi-media and biological activated carbon filtration at the WWTP Utrecht in the Netherlands, simultaneous nutrient removal to MTR quality was observed. Furthermore, simultaneous removal of heavy metals, 17β-estradiol, bisphenol A and nonylphenols to extreme low concentrations by denitrifying activated carbon filtrated is achieved.


1999 ◽  
Vol 8 (2) ◽  
pp. 231-254 ◽  
Author(s):  
Catherine N. Mulligan ◽  
Raymond N. Yong ◽  
Bernard F. Gibbs

Sign in / Sign up

Export Citation Format

Share Document