scholarly journals Numerical and experimental analysis of behaviour of steel fibre reinforced selfcompacting concrete slabs under loading

2020 ◽  
Vol 313 ◽  
pp. 00038
Author(s):  
Martin Lišovský ◽  
Dalibor Kocáb ◽  
Petr Žítt ◽  
Dominik Wünsche

The paper deals with testing of self-compacting concrete slabs with scattered steel reinforcement, which are designed for the production of garden furniture or benches. A self-compacting concrete was designed for the experiment and its composition was further modified by the addition of steel fibres. Plain self-compacting concrete was used to produce test specimens with nominal dimensions of 40×40×160 mm, which were used to determine the basic properties of concrete, and test slabs for experimental analysis of their behaviour under load. The self-compacting concrete with steel fibres was only used to produce test slabs. The slabs were loaded in three different ways, of which one was to simulate real loading of the horizontal part of a concrete bench. The results of the loading tests are compared to the results of a nonlinear numerical analysis conducted using the finite element method.

Author(s):  
Tomasz Ponikiewski ◽  
Jacek Gołaszewski

Abstract The paper presents a study on self-compacting concrete with two types of steel fibres. Under consideration was the effect the method of forming of beam elements has on the distribution of steel fibres. Formed we beams of dimensions 120×15×15 cm3 and 180×15×15 cm3. The self-compacting mixture contained steel fibres of varying lengths (35 and 50 mm) and varying levels of their volume ratio in the mix (0.5% - 1.0% - 1.5%).


Fractals ◽  
2020 ◽  
Vol 28 (04) ◽  
pp. 2050059
Author(s):  
IANCU DIMA ◽  
RACHEL POPP ◽  
ROBERT S. STRICHARTZ ◽  
SAMUEL C. WIESE

We construct a surface that is obtained from the octahedron by pushing out four of the faces so that the curvature is supported in a copy of the Sierpinski gasket (SG) in each of them, and is essentially the self similar measure on SG. We then compute the bottom of the spectrum of the associated Laplacian using the finite element method on polyhedral approximations of our surface, and speculate on the behavior of the entire spectrum.


1984 ◽  
Vol 106 (1) ◽  
pp. 130-136 ◽  
Author(s):  
W. T. Asbill ◽  
P. D. Pattillo ◽  
W. M. Rogers

The purpose of this investigation was to gain a better understanding into the mechanical behavior of the API 8 Round casing connection, when subjected to service loads of assembly interference, tension and internal pressure. The connection must provide both structural and sealing functions and these functions were evaluated by several methods. Part I discusses the methods of analysis, which include hand calculations using strength of materials, finite element method via unthreaded and threaded models, and experimental analysis using strain gages. Comparisons of all three methods are made for stresses and show that the finite element method accurately models connection behavior.


2016 ◽  
Vol 78 (11) ◽  
Author(s):  
Juli Asni Lamide ◽  
Roslli Noor Mohamed ◽  
Ahmad Baharuddin Abd Rahman

This paper presents an experimental test program that was carried out to investigate the shear performance of steel fibre self-compacting concrete (SFSCC) beams. In this paper, the mechanical performance of results from all mixtures used to cast normal concrete (NC), self-compacting concrete (SCC) and steel fibre self-compacting concrete (SFSCC) were also investigated. In total, 27 cubes, 9 cylinders, 9 prisms and 9 beams were prepared for the assessment of mechanical properties of three different mixtures. Four beams (125 mm x 250 mm x 2200 mm) were tested and cast using three different concrete mixtures, having two different spacing of stirrups as a result of 50% reduction of the stirrups amount. Three beams with different mixtures having similar stirrups spacing 125mm while the fourth beam with SFSCC mixes having 250mm stirrups spacing. The results show that the mechanical properties were positively affected with steel fibres inclusion. The addition of steel fibres showed an increment up to 40% in the shear load capacity for B-SFSCC125 compared to B-NC125 and B-SCC125.  In addition, the crack pattern of B-SFSCC was found better than B-NC and B-SCC.   


2013 ◽  
Vol 831 ◽  
pp. 120-123
Author(s):  
Hitoshi Mitsunaga ◽  
Tomoe Kirita ◽  
Takashi Hara

This paper presented the result of analysis about R/C arch by use of finite element method. The design method for R/C shell has not been established due to its numerical difficulties. Using the finite element method, it was possible to analyze these structures. However, the precise experiments were required to verify the reliability of these analyses and it was necessary to improve the numerical analyses. An R/C arch is a basic form of the R/C shell. Under various conditions, that was, R/C arch without initial imperfection, different rise-span ratio, three types of loading points and supporting conditions, loading tests of R/C arch were performed. After experiment, analysis was also carried out. And as the result compared experimental and numerical results, accuracy of this analysis method was elucidated.


2014 ◽  
Vol 969 ◽  
pp. 73-77 ◽  
Author(s):  
Oldrich Sucharda ◽  
Jan Kubosek

The purpose of this paper is to compare calculation of internal forces and deformations of slabs for two calculation methods: the finite element method and the finite difference method. Two concrete slabs have been analysed. In the case of the finite element method, different element mesh are used, providing, thus, solutions in different variants. The calculation and algorithms is based on a thin slab theory. Variants calculate in program Scia Engineer effects of shearing forces by means of the Midlins theory or thin slab theory. Algorithms for the calculation were developed in Matlab.


2012 ◽  
Vol 39 (7) ◽  
pp. 834-848 ◽  
Author(s):  
Farhad Aslani ◽  
Shami Nejadi

Steel fibre reinforced self-compacting concrete (SFRSCC) is a relatively new composite material that combines the benefits of the self-compacting concrete (SCC) technology with the advantages derived from the fibre addition to a brittle cementitious matrix. Steel fibres improve many of the properties of SCC elements including tensile strength, ductility, toughness, energy absorption capacity, fracture toughness and cracking. Although the available research regarding the influence of steel fibres on the properties of SFRSCC is limited, this paper investigates the bond characteristics between steel fibre and SCC. Based on the available experimental results, the current analytical steel fibre pullout model is modified by considering the different SCC properties and different fibre types (smooth, hooked) and fibre inclination. To take into account the effect of fibre inclination in the pullout model, apparent shear strengths (τ(app)) and slip coefficient (β) are incorporated to express the variation of pullout peak load and the augmentation of peak slip as the inclined angle increases. These variables are expressed as functions of the inclined angle (ϕ).


Sign in / Sign up

Export Citation Format

Share Document