scholarly journals Simultaneous Adsorption of Cation and Anion by Thermosensitive Hydrogels

2021 ◽  
Vol 333 ◽  
pp. 11007
Author(s):  
Toni Suharto ◽  
Takehiko Goto ◽  
Satoshi Nakai

Simultaneous usage of cationic and anionic thermosensitive hydrogels was shown to positively contribute to adsorption of heavy metal ions. The potential capacity for recovering heavy metal ions from an aqueous solution was enhanced by incorporating relatively hydrophobic moiety to the hydrogels, which was ascribed to the increase in the desorption on elevating the temperature over the lower critical swelling temperature (LCST). N-tert-butylacrilamide was added into the hydrogels to increase its desorption potential. The addition of N-tert-butylacrylamide does not significantly affect hydrogels’ adsorption ability. Moreover, the adsorption-desorption cycle was not diminished by repeating the temperature swing above the critical temperature at which the volume phase transition was induced.

Author(s):  
Farnaz Seyedvakili ◽  
Mohammad Samipoorgiri

A coupled adsorption–desorption thermo-kinetic model is developed incorporating both adsorption and desorption reactions. A local pseudo-equilibrium condition at the interface of adsorbent and adsorbate bulk phases was used as isotherm equation which can even be applied for multi-pollutants scenarios. The developed model is then validated using collected experimental data of heavy metal ions (Pb, Cu, Cd, Zn, and Ni). Comparisons were made for a number of isotherm and kinetic models to examine the performance of the proposed model. The developed model revealed desirable accuracy and superiority over other models in predicting the adsorption behavior and can be used for other systems of concern. The model correlates the adsorption kinetic with an [Formula: see text] value of 0.9391 and desorption kinetic with an [Formula: see text] value of 0.9383. By application of the proposed model to any available adsorption datasets, the individual characteristics of adsorption and desorption can be determined.


2019 ◽  
Vol 37 (3-4) ◽  
pp. 205-216 ◽  
Author(s):  
Yujie Zhang ◽  
Quanqin Xue ◽  
Fei Li ◽  
Jizhe Dai

A polypyrrole/chitosan composite material was obtained by chemical polymerization. The adsorption performance of a hot-molded polypyrrole/chitosan composite electrode was tested by adsorption/desorption experiments. Scanning electron microscopy and Fourier-transform infrared spectroscopy both showed the deposition of polypyrrole on the chitosan surface. The specific capacitance of the polypyrrole/chitosan composite was determined by cyclic voltammetry in 1.0 M KCl at 0.01 V/s as 102.96 F/g. The adsorption/desorption experiments indicated that the specific adsorption capacity of the composite for Cu2+ was 99.67 mg/g, while the removal performance for other metal ions, such as Ag+, Pb2+, and Cd2+, was good. The results of multicycle adsorption/desorption tests showed that the adsorption rate of the polypyrrole/chitosan composite electrode for Cu2+ was decreased from 56.4 to 51.4% over 10 cycles, demonstrating the stable metal-ion adsorption/desorption behavior of the composite electrode. The obtained performances show that the prepared polypyrrole/chitosan composite material is an ideal electrode material for the removal of heavy metal ions.


2017 ◽  
Vol 901 ◽  
pp. 142-148 ◽  
Author(s):  
Wahyu Waskito Aji ◽  
Edi Suharyadi

Removal of heavy metal ions (Co2+, Cu2+, Zn2+, Fe2+, Mn2+, and Ni2+) from artificial wastewater has been successfully perfomed by adsorption process using magnetic ferrite (MFe2O4; M=Co2+, Mg2+, Zn2+, Fe2+, Mn2+, and Ni2+) nanoparticles. Ferrite nanoparticles were synthesized using coprecipitation method and used as absorbent in heavy metal ions removal with concentration of 5 g/L and 10 g/L. The adsorption and desorption ability of each ferrite nanoparticles, the effect of heavy metal ion in adsorption and desorption process, and the endurance of ferrite nanoparticles were investigated using atomic absorption spectroscopy (AAS). The removal process has been conducted for wastewater at pH 7.It showed the presence of heavy metal precipitate in solution. The result shows that MgFe2O4 has the highest adsorption ability than other ferrite and MnFe2O4 is the lowest. Desorption ability of all ferrites is high except for Fe ion removal. Desorption of Fe ion shows very low result which might due to FeO bond from Fe ion reaction in acid solution. The endurance of MnFe2O4 and Fe3O4 as adsorbent after repeated adsorption and desorption process is up to 4 times and more than 6 times. The MnFe2O4 nanoparticles show a stability in adsorption ability after 4 times repetition adsorption and desorption process.


2014 ◽  
Vol 625 ◽  
pp. 65-68
Author(s):  
Neo Hui Ying ◽  
Yin Fong Yeong

In the present work, the adsorption of heavy metal ions using amine-functionalized MCM-41 was investigated. Amine-functionalized MCM-41 was synthesized by incorporation of tertiary amine functional group namely 3-[2-(2-aminoethylamino) ethylamino] propyltrimethoxysilane (AEPTMS) into MCM-41 through co-condensation method. The resultant adsorbents were characterized using elemental analysis, FTIR, and N2 adsorption-desorption. Amine-functionalized MCM-41 showed higher Cu2+ adsorption capacity of 4.52 mg/L compared to 0.94 mg/L for MCM-41 .


2009 ◽  
Vol 27 (5) ◽  
pp. 513-521 ◽  
Author(s):  
Sergio Montes Sotomayor ◽  
Gonzalo Montes-Atenas ◽  
Francisco Garcia-Garcia ◽  
Manuel Valenzuela ◽  
Eduardo Valero ◽  
...  

2012 ◽  
pp. 335-342 ◽  
Author(s):  
Marina Sciban ◽  
Jelena Prodanovic ◽  
Radojka Razmovski

The tea fungus was found to have good adsorption capacities for heavy metal ions. In this work it was treated with HCl or NaOH at 20?C or 100?C, with the aim to improve its adsorption ability. The sorption of Cu(II) and Cr(VI) ions from aqueous solutions by raw and treated tea fungus was investigated in the batch mode. The largest quantity of adsorbed Cu(II), of about 55 mg/g, was achieved by tea fungus modified with NaOH at 100?C. For Cr(VI), the largest quantity of adsorbed anions, of about 58 mg/g, was achieved by the adsorbent modified with NaOH at 20?C. It was shown that acid modification of tea fungus biomass was not effective.


Sign in / Sign up

Export Citation Format

Share Document