scholarly journals Adsorption, Desorption and Recovery of Heavy Metal Ions by Vermiculite (1st Report)

Author(s):  
Hiromu FUSHIMI ◽  
Tohshi UCHIMURA
Author(s):  
Farnaz Seyedvakili ◽  
Mohammad Samipoorgiri

A coupled adsorption–desorption thermo-kinetic model is developed incorporating both adsorption and desorption reactions. A local pseudo-equilibrium condition at the interface of adsorbent and adsorbate bulk phases was used as isotherm equation which can even be applied for multi-pollutants scenarios. The developed model is then validated using collected experimental data of heavy metal ions (Pb, Cu, Cd, Zn, and Ni). Comparisons were made for a number of isotherm and kinetic models to examine the performance of the proposed model. The developed model revealed desirable accuracy and superiority over other models in predicting the adsorption behavior and can be used for other systems of concern. The model correlates the adsorption kinetic with an [Formula: see text] value of 0.9391 and desorption kinetic with an [Formula: see text] value of 0.9383. By application of the proposed model to any available adsorption datasets, the individual characteristics of adsorption and desorption can be determined.


2019 ◽  
Vol 37 (3-4) ◽  
pp. 205-216 ◽  
Author(s):  
Yujie Zhang ◽  
Quanqin Xue ◽  
Fei Li ◽  
Jizhe Dai

A polypyrrole/chitosan composite material was obtained by chemical polymerization. The adsorption performance of a hot-molded polypyrrole/chitosan composite electrode was tested by adsorption/desorption experiments. Scanning electron microscopy and Fourier-transform infrared spectroscopy both showed the deposition of polypyrrole on the chitosan surface. The specific capacitance of the polypyrrole/chitosan composite was determined by cyclic voltammetry in 1.0 M KCl at 0.01 V/s as 102.96 F/g. The adsorption/desorption experiments indicated that the specific adsorption capacity of the composite for Cu2+ was 99.67 mg/g, while the removal performance for other metal ions, such as Ag+, Pb2+, and Cd2+, was good. The results of multicycle adsorption/desorption tests showed that the adsorption rate of the polypyrrole/chitosan composite electrode for Cu2+ was decreased from 56.4 to 51.4% over 10 cycles, demonstrating the stable metal-ion adsorption/desorption behavior of the composite electrode. The obtained performances show that the prepared polypyrrole/chitosan composite material is an ideal electrode material for the removal of heavy metal ions.


2021 ◽  
Vol 333 ◽  
pp. 11007
Author(s):  
Toni Suharto ◽  
Takehiko Goto ◽  
Satoshi Nakai

Simultaneous usage of cationic and anionic thermosensitive hydrogels was shown to positively contribute to adsorption of heavy metal ions. The potential capacity for recovering heavy metal ions from an aqueous solution was enhanced by incorporating relatively hydrophobic moiety to the hydrogels, which was ascribed to the increase in the desorption on elevating the temperature over the lower critical swelling temperature (LCST). N-tert-butylacrilamide was added into the hydrogels to increase its desorption potential. The addition of N-tert-butylacrylamide does not significantly affect hydrogels’ adsorption ability. Moreover, the adsorption-desorption cycle was not diminished by repeating the temperature swing above the critical temperature at which the volume phase transition was induced.


2014 ◽  
Vol 625 ◽  
pp. 65-68
Author(s):  
Neo Hui Ying ◽  
Yin Fong Yeong

In the present work, the adsorption of heavy metal ions using amine-functionalized MCM-41 was investigated. Amine-functionalized MCM-41 was synthesized by incorporation of tertiary amine functional group namely 3-[2-(2-aminoethylamino) ethylamino] propyltrimethoxysilane (AEPTMS) into MCM-41 through co-condensation method. The resultant adsorbents were characterized using elemental analysis, FTIR, and N2 adsorption-desorption. Amine-functionalized MCM-41 showed higher Cu2+ adsorption capacity of 4.52 mg/L compared to 0.94 mg/L for MCM-41 .


2009 ◽  
Vol 27 (5) ◽  
pp. 513-521 ◽  
Author(s):  
Sergio Montes Sotomayor ◽  
Gonzalo Montes-Atenas ◽  
Francisco Garcia-Garcia ◽  
Manuel Valenzuela ◽  
Eduardo Valero ◽  
...  

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Zhanghang Yang ◽  
Qixiang Xu ◽  
Ruiqin Zhang ◽  
Qianming Huang ◽  
Mingxin Liu

This paper provides sufficient evidence on how the crop-residual-derived charcoal could effectively restore the soil polluted by the heavy metal. In this paper, straw char at three temperatures of 300°C, 500°C, and 700°C, labeled as RS300, RS500, and RS700, was prepared by low temperature pyrolysis technique using straw as raw material, and the competitive adsorption desorption of Pb2+, Cd2+, Cu2+, and Zn2+ in acidic solution and the mechanism were investigated by static adsorption experiments. Since the crop-residual-derived charcoal could effectively restore the nutritional structure of the soil, which contributes to preventing the decrease in grain yield, and it is also a kind of renewable environment-friendly resource by itself, which could be used in control the pollution of heavy metal ions, it is expected that the crop-residual-derived charcoal will be a new adsorption material that could be used to control the heavy metal pollution in the future; the adsorption effect of biochar as new adsorption material on heavy metal ions has a distinct advantage over traditional adsorbent materials, and biochar is a renewable energy source, which is cheap and better for recycling resources.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Luciana Sartore ◽  
Kamol Dey

In this research work, novel hybrid materials based on multifunctional polymers and silica were developed and investigated in view of possible employment as sorbents for removal of heavy metal ions from water in presence of various ions. Organic-inorganic hybrid materials were prepared by covalent bonding of vinyl-terminated polyamidoamine (PAA) onto aminated silica particles. Two series of polyamidoamine-grafted silica, differing in the PAA chemical structure, were synthesized, and their heavy metal ions chelating properties were investigated. Column adsorption procedure for Cu, Zn, and Ni in aqueous solution was successfully established. Moreover, the adsorption behaviour of the materials was evaluated in different ionic strength solutions as well as in distilled and natural water. Organic-inorganic hybrid materials exhibited excellent chelating properties and selectivity for different metal ions. The hybrid columns showed exceptional eluting and regenerating property using diluted hydrochloric acid solution as eluent. In particular, the hybrid materials containing more carboxy groups possessed superior adsorption ability, reusability, and stability. The consecutive adsorption-desorption experiments exhibited that this material could be reused more than 20 cycles without almost any loss of adsorption capability. These new organic-inorganic sorbents appear very promising as an effective solid-phase extraction material for the selective preconcentration or removing of heavy metal ions from the environment.


Sign in / Sign up

Export Citation Format

Share Document