scholarly journals Slopes stability analysis from Rosia Poieni open pit mine, Romania

2021 ◽  
Vol 342 ◽  
pp. 02005
Author(s):  
Mihaela Toderaş ◽  
Mykhailo Filatiev

In the case of Roşia Poieni open pit mine the level of +805 m was established as a daily operating limit; the division into benches was based on this level by dividing into horizontal slices with a thickness of 15 m, equal to the height of the bench. Thus, there were 27 benches in the Curmătura area and 23 benches in the Ruginiş area. The general slope angle was set at 35°, the angle for which the tailings volumes and implicitly the opening-up coefficient were calculated. The stability analysis was performed for individual bench, 2 benches system and the general slope of the quarry (consisting of 24 benches), using two methods (Fellenius and Janbu). A polygonal slip surface was also modelled; such potential landslide surfaces can appear in the slopes of the Roşia Poieni quarry due to the natural cracking systems of the massif but also due to the secondary cracking generated by the used drilling-blasting works (exploitation technology). The stability check was done by applying Hoek’s graphical-analytical method; the determined values for the safety factor satisfy the condition of being greater than 1.3. In these circumstances, no further measures are required to increase the stability reserve.

2011 ◽  
Vol 84-85 ◽  
pp. 729-732 ◽  
Author(s):  
Jun Guo ◽  
De Qing Gan ◽  
Yu Zhang ◽  
Wei Hang Zhang

The paper analyzed major factors that influence the stability of open-pit slope and established the GM (1, N) model based on the program of Xingshan strip mine, which provided an effective method for evaluating the slope stability.


2020 ◽  
Vol 194 ◽  
pp. 04043
Author(s):  
Guo Xiaoli ◽  
Yan Jiancheng ◽  
Li Xueliang ◽  
Wen Xin ◽  
Li Xingli

The dumps in the open-pit mining area in the eastern grassland are prone to landslides due to the fragile ecological environment, so it is inevitable to reshape the dump slopes. In order to explore a more scientific method for slope shaping of open-pit mine dump, slope stability analysis were used to compare effect of three types of slope-type (wave-shaped, slope-shaped and step-shaped slope shaping method)in outside dumping site of Baori Hiller open-pit mine. The results show that the slope stability is negatively correlated with the slope angle, and the stability of different shaping slopes is realized as wave-shaped slope (F=2.711)> Slope-shaped slope(F=2.513)>Step-shaped slope(F=1.047), in which the wave type and slope type are all within the safe range, but the step type slope is unstable; in consideration of cost, stability and erosion resistance, it is better to set the slope angle of the dump to 15°.The wave-shaped shaping method of the natural dumping of the excavation field outside the Baori Hiller open-pit mine has the best effect and is worth promoting.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Shuhong Wang ◽  
Chengjin Zhu ◽  
Pengyu Wang ◽  
Zishan Zhang

The present study aims to elucidate the problem of a rock mass structural plane with a range of damage degrees and the numerical model selection for analysis of a slope with multiple sliding surfaces. Based on the relative displacement between blocks, the dynamic strength reduction-discontinuous deformation analysis (hereinafter referred to as DSR-DDA) method is proposed for studying slopes with multiple sliding surfaces. The slope-slider classic case was used to test the displacement threshold. The model was applied to the stability analysis of multiple sliding surfaces of a high rock slope in the Fushun West Open-Pit Mine. The results show that when the displacement threshold is set to 1 mm, the error between the DSR-DDA results and the theoretical solution is within 0.5%, which satisfies the calculation requirements. The most dangerous slip surface in the Fushun West Open-Pit Mine slope was identified. Based on the numerical slope model after the first landslide, the position of the secondary slip surface was then identified. The failure mode is traction sliding failure, and the middle and lower oil shales play a key role in the slope stability. This study recommends that mining of the remaining oil shale should stop to avoid causing large-scale landslides in the upper part of the slope and landslides at the pit-city boundary.


2014 ◽  
Vol 711 ◽  
pp. 558-561
Author(s):  
Rui Wen Chen ◽  
Ping Cao ◽  
Ke Zhang

As the mining operation of Chenmen Mountain copper mine gradually extents to a deeper stage, the stability of open pit slopes should be revaluated and new reasonable gradient is to be designed. Because of the big amount of calculation workload that should be applied to all the slopes, this paper proposed a method which is based on Newton Interpolation theory to reduce some numerous and repetitive job. Base on differential notes calculated by FLAC3D, a function precisely expressing the relation between the safety factor and slope angle was established, through which the safety factor of any slope of different gradients could be obtained directly. By comparative study of traditional methods such as the finite difference technique, it is indicated that the results from the new method that proposed in this study have a good agreement with results calculated by program FLAC3D.


2018 ◽  
Vol 1065 ◽  
pp. 252002 ◽  
Author(s):  
Ligang Wang ◽  
Lewen Yu ◽  
Yuansheng Zhang ◽  
Da Zhang ◽  
Zhigang Tao ◽  
...  

2021 ◽  
pp. 46-54
Author(s):  
Muhammad Amin Syam ◽  
Heriyanto Heriyanto ◽  
Hamzah Umar

PT Belayan Internasional Coal is an open-pit system mining company, one of its geotechnical activities is the construction of the slopes. Slope stability analysis used the Bishop Simplified method to obtain the value of the dynamic safety factor (≥ 1,1). Currently, the value of the Safety Factor (FK) is an indicator in determining whether the slope is stable or not. The parameters used in the slope stability analysis are the physical and mechanical properties of the rock, namely weight (ɣ), cohesion value (c), and internal shear angle (∅). From the results of dynamic overall slope calculations, the recommended overall slope is constructed with an individual slope angle of 55°, a bench width of 5 meters, a height of 10 meters, and the number of individual slopes of 8 slopes. This design will produce dimensions of the overall slope with 41° slope angle, 80 meters high, and has a dynamic safety factor value of 1,102 with the water-saturated condition. Thus, the slopes are in stable condition.


2020 ◽  
Vol 2 (1) ◽  
pp. 44-57
Author(s):  
Lianheng Zhao ◽  
Nan Qiao ◽  
Zhigang Zhao ◽  
Shi Zuo ◽  
Xiang Wang

Abstract The upper bound limit analysis (UBLA) is one of the key research directions in geotechnical engineering and is widely used in engineering practice. UBLA assumes that the slip surface with the minimum factor of safety (FSmin) is the critical slip surface, and then applies it to slope stability analysis. However, the hypothesis of UBLA has not been systematically verified, which may be due to the fact that the traditional numerical method is difficult to simulate the large deformation. In this study, in order to systematically verify the assumption of UBLA, material point method (MPM), which is suitable to simulate the large deformation of continuous media, is used to simulate the whole process of the slope failure, including the large-scale transportation and deposition of soil mass after slope failure. And a series of comparative studies are conducted on the stability of cohesive slopes using UBLA and MPM. The proposed study indicated that the slope angle, internal friction angle and cohesion have a remarkable effect on the slip surface of the cohesive slope. Also, for stable slopes, the calculation results of the two are relatively close. However, for unstable slopes, the slider volume determined by the UBLA is much smaller than the slider volume determined by the MPM. In other words, for unstable slopes, the critical slip surface of UBLA is very different from the slip surface when the slope failure occurs, and when the UBLA is applied to the stability analysis of unstable slope, it will lead to extremely unfavorable results.


Sign in / Sign up

Export Citation Format

Share Document