scholarly journals Extension of the forming limits of extrusion processes in sheet-bulk metal forming for production of minute functional elements

2020 ◽  
Vol 7 ◽  
pp. 9 ◽  
Author(s):  
Florian Pilz ◽  
Johannes Henneberg ◽  
Marion Merklein

Increasing demands in modern production pose new challenges to established forming processes. One approach to meet these challenges is the combined use of established process classes such as sheet and bulk forming. This innovative process class, also called sheet-bulk metal forming (SBMF), facilitates the forming of minute functional elements such as lock toothing and gear toothing on sheet-metal bodies. High tool loads and a complex material flow that is hard to control are characteristic of SBMF. Due to these challenging process conditions, the forming of functional elements is often insufficient and necessitates rework. This negatively affects economic efficiency. In order to make use of SBMF in industrial contexts, it is necessary to develop measures for improving the forming of functional elements and thereby push existing forming boundaries. This paper describes the design and numerical replication of both a forward and a lateral extrusion process so as to create involute gearing in combination with carrier teeth. In a combined numerical-experimental approach, measures for extending the die filling in sheet-metal extrusion processes are identified and investigated. Here, the focus is on approaches such as process parameters, component design and locally adjusted tribological conditions; so-called ‘tailored surfaces’. Based on the findings, fundamental mechanisms of action are identified, and measures are assessed with regard to their potential for application. The examined approaches show their potential for improving the forming of functional elements and, consequently, the improvement of geometrical accuracies in functional areas of the workpieces.

2021 ◽  
Author(s):  
Manuel Reck ◽  
Marion Merklein

Due to the ongoing technological development, the demand for geometrically complicated high performance parts with great functional density is increasing. Often, the use of sheet metal is a beneficial approach in manufacturing technology to meet the requirements on components regarding material strength and lightweight construction goals. The forming of therefore required complex sheet metal part geometries with integrated functional elements cause the need for a three dimensional material flow. Sheet-bulk metal forming, characterized by the application of bulk forming operations on sheet metals, is a suitable approach to produce such components. A challenge is the material flow control, resulting in an insufficient die filling of the functional elements. The use of tailored blanks with a defined sheet thickness distribution is an auspicious approach to face this challenge in subsequent forming processes. In the presented work, semi-finished products with a continuous thickness profile manufactured by orbital forming are applied in a full forward extrusion process. By an additional implementation of a heat treatment, the tailored blanks undergo a recrystallization process that causes a softening of the strain hardened material. In this paper, the potential of a heat treatment in the process class of sheet-bulk metal forming is shown by characterizing the geometrical and mechanical properties of the functional components by applying the mild deep drawing steel DC04 with an initial sheet thickness of t0 = 2.0 mm.


2019 ◽  
Vol 13 (6) ◽  
pp. 981-992 ◽  
Author(s):  
F. Pilz ◽  
M. Merklein

Abstract Nowadays, the functional integration of workpieces challenges existing forming processes. The combination of established forming processes – like sheet metal and bulk forming – offers the possibility to counter this issue. The application of bulk forming operations on sheet metal semi-finished products, also called sheet-bulk metal forming (SBMF), is an innovative approach. The potential of SBMF cannot be fully exploited, as there are no recommendations in terms of workpiece design and layout influence on the process result. Therefore, this paper focuses on the analysis of semi-finished products and component design parameters on resulting part and process properties in two extrusion processes in SBMF. The investigation is based on a combined numerical and experimental approach. It is shown that the investigated design parameters, in addition to the achievable dimensional accuracy, substantially influence the occurring tool loads as well as the required process forces.


2020 ◽  
Vol 4 (2) ◽  
pp. 41
Author(s):  
Bernd-Arno Behrens ◽  
Wolfgang Tillmann ◽  
Dirk Biermann ◽  
Sven Hübner ◽  
Dominic Stangier ◽  
...  

Producing complex sheet metal components in fewer process steps motivated the development of the innovative forming process called sheet-bulk metal forming (SBMF). In this process, sheet metal forming and bulk-metal forming are combined to create a unique forming process in which a component with external and internal gearing is produced in three production steps. However, the high degrees of deformation that occur using high-strength steels and the number of different process steps result in high process forces, strongly limiting the service life of tools. To reduce the forming force during SBMF processes, tool and process modifications were investigated. Therefore, plane-strain compression tests were conducted to examine the influence of a CrAlN PVD coating and tailored surfaces produced by high-feed milling (HF) of tool-active elements on the material flow of the specimens. In addition to the tool-sided modifications, the influence of an oscillation overlay during the forming process was investigated. Based on the results of the compression tests, the surfaces of the active tool elements of the SBMF process were modified in order to transfer the basic experimental results to the production of a functional component. The friction is thus adapted locally in the SBMF process.


2018 ◽  
Vol 190 ◽  
pp. 13003 ◽  
Author(s):  
Marion Merklein ◽  
Maria Löffler ◽  
Daniel Gröbel ◽  
Johannes Henneberg

Highly-integrated and closely-tolerated functional components can be produced by sheet-bulk metal forming which is the application of bulk forming operations on sheet metals. These processes are characterized by a successive and/or simultaneous occurrence of different load conditions such as stress and strain states which reduce the geometrical accuracy of the functional elements. Thus, one main challenge within sheet-bulk metal forming is the identification of methods to control the material flow and thus to improve the product quality. One suitable approach is to control the material flow by local modifications of the tribological conditions. Within this study requirements regarding the needed adaption of the tribological conditions for a specific sheet-bulk metal forming process were defined by numerical investigations. The results reveal that a local increase of the friction leads to an improved die filling of the functional elements. Based on these results abrasive blasting as a method to modify the tool surface and thus influencing the tribological behaviour was investigated. For the determination of the tribological mechanism of blasted tool surfaces, the influence of different blasting media as well as blasting pressures on the surface integrity and the friction were determined. The correlations between surface properties and friction conditions were used to derive the mechanisms of blasted tool surfaces.


2015 ◽  
Vol 794 ◽  
pp. 81-88 ◽  
Author(s):  
Maria Löffler ◽  
Daniel Groebel ◽  
Ulf Engel ◽  
Kolja Andreas ◽  
Marion Merklein

Due to current ecological and economic developments there is a growing demand for functional components with complex and closely tolerated geometrical features. Conventional sheet and bulk metal forming operations leads to products which are often limited in their geometrical and functional variety. A promising approach is the process-class sheet-bulk metal forming (SBMF). SBMF is characterised by the application of bulk and sheet forming operations on sheet metals [1]. This combination leads to locally and temporally varying load conditions regarding stress as well as strain states. In order to get high quality parts, controlling the material flow is of major importance. Modified Surfaces, so-called tailored surfaces represent an innovative approach to control the material flow. The objective of the current study is the experimental investigation of the effectiveness of locally adapted tribological conditions using workpiece-and tool-sided tailored surfaces within SBMF processes. The study has shown that the local adaption of workpiece and tool surface increased the heights of functional elements. Thus, using locally adapted tribological conditions leads to an improvement of the quality of the produced gearing components. In a further step the influence of surface modifications on the surface properties of the manufactured components are analysed. Additionally, investigations regarding the wear behaviour of tool-sided surface adaptions lead to the assumption, that the effectiveness of tailored surfaces is reduced during the operating time of the tools.


2011 ◽  
Vol 473 ◽  
pp. 83-90 ◽  
Author(s):  
Thomas Schneider ◽  
Marion Merklein

Due to ecological and economic challenges there is a rising demand on closely-tolerated complex functional components. Regarding short process chains and improved mechanical properties conventional forming processes are often limited. A promising approach to meet these requirements can be seen in the combination of traditional sheet and bulk metal forming processes, to form sheet metals out of the sheet plane with typical bulk forming operations. The challenge of applying conventional bulk forming operations on sheet metal is the interaction between regions of high and low deformation, which is largely unknown in literature. To analyze this topic fundamentally, a process combination of deep drawing and upsetting is developed for manufacturing tooth-like elements at pre-drawn cups. To fully understand material flow out of the sheet plane into the tooth cavity and to identify and qualify process factors depending on the functional elements´ geometry and friction, a single upsetting stage forming a simplified model of the blank is virtually analyzed with finite-element simulation. By inhibiting the forming history of the pre-drawn blank, the upsetting process can be investigated without interactions with a previous deep drawing operation.


2013 ◽  
Vol 554-557 ◽  
pp. 1484-1489 ◽  
Author(s):  
Bernd Arno Behrens ◽  
Sven Hübner ◽  
Milan Vucetic

Due to novel processes like sheet-bulk metal forming, the requirements for sheet metal forming are increased. Sheet-bulk metal forming is a new interconnected process in which the part itself is manufactured by deep drawing and the gearing will be produced with bulk forming in a combined process at room temperature. This process is characterized by a triaxial state of stress and a triaxial dimensional change with true strains up to  = 1-2 by using sheet blanks. Within the use of superimposing of oscillation on a sheet-bulk metal forming process the required forming force can be reduced and the accuracy of dimension of the part can be improved. Within this paper the influence of the superimposing of oscillation on the sheet bulk metal forming will be shown on combined ironing and external extrusion process. For the superimposing of oscillation different excitation frequencies will be analysed. Furthermore the die clearance will be varied to increase the requirements on the process. Finally the influence of the different excitation frequencies and the different die clearances will be summarized in cause and effect relationship diagram.


2016 ◽  
Vol 10 (1) ◽  
pp. 63-80 ◽  
Author(s):  
D. Gröbel ◽  
R. Schulte ◽  
P. Hildenbrand ◽  
M. Lechner ◽  
U. Engel ◽  
...  

2017 ◽  
Vol 107 (10) ◽  
pp. 683-688
Author(s):  
M. Prof. Liewald ◽  
A. Felde ◽  
R. Neher

Der Fachbeitrag beschreibt numerische und experimentelle Arbeiten zur Entwicklung einer Stadienfolge und einzelner Umformstufen in der Fertigung eines Versuchsbauteils mit zwei Außenverzahnungen und einem inneren Verzahnungsprofil, ausgehend von einer Ronde aus Blech. Im Zuge der Untersuchung wurde bestätigt, dass der Einsatz eines in der Dicke eng tolerierten, flachen Halbzeugs aus Blechmaterial signifikante Vorteile für die erreichbare Lagegenauigkeit bei der Herstellung hohler Pressteile mit Verzahnungen mit sich bringen kann.   This paper is about numerical and experimental work for developing a calibration sequence and individual forming operations to produce a hollow specimen with two external teeth and an internal toothed profile, starting from sheet metal material. The investigation shows that the application of an accurate, flat-shaped semi-finished sheet product can lead to significant advantages regarding the achievable positional accuracy in the production of such hollow press parts.


Sign in / Sign up

Export Citation Format

Share Document