scholarly journals Comparison of Dynamical Behavior Between Fractional Order Delayed and Discrete Conformable Fractional Order Tumor-Immune System

Author(s):  
ERCAN BALCI ◽  
Senol KARTAL ◽  
İlhan ÖZTÜRK

In this paper, we analyze the dynamical behavior of the delayed fractional-order tumor model with Caputo sense and discretized conformable fractional-order tumor model. The model is constituted with the group of nonlinear differential equations having effector and tumor cells. First of all, stability and bifurcation analysis of the delayed fractional-order tumor model in the sense of Caputo fractional derivative is studied, and the existence of Hopf bifurcation depending on the time delay parameter is proved by using center manifold and bifurcation theory. Applying the discretization process based on using the piecewise constant arguments to the conformable version of the model gives a two-dimensional discrete system. Stability and Neimark-Sacker bifurcation analysis of the discrete system are demonstrated using the Schur-Cohn criterion and projection method. This study reveals that the delay parameter $ \tau $ in the model with Caputo fractional derivative and the discretization parameter $ h $ in the discrete-time conformable fractional-order model have similar effects on the dynamical behavior of corresponding systems. Moreover, the effect of the order of fractional derivative on the dynamical behavior of the systems is discussed. Finally, all results obtained are interpreted biologically, and numerical simulations are presented to illustrate and support theoretical results.

Meccanica ◽  
2021 ◽  
Author(s):  
Tomasz Blaszczyk ◽  
Krzysztof Bekus ◽  
Krzysztof Szajek ◽  
Wojciech Sumelka

AbstractIn this paper, the Riesz-Caputo fractional derivative of variable order with fixed memory is considered. The studied non-integer differential operator is approximated by means of modified basic rules of numerical integration. The three proposed methods are based on polynomial interpolation: piecewise constant, piecewise linear, and piecewise quadratic interpolation. The errors generated by the described methods and the experimental rate of convergence are reported. Finally, an application of the Riesz-Caputo fractional derivative of space-dependent order in continuum mechanics is depicted.


2020 ◽  
Vol 30 (01) ◽  
pp. 2050004 ◽  
Author(s):  
Jianli Liang ◽  
Longkun Tang ◽  
Yonghui Xia ◽  
Yi Zhang

In 2014, Khalil et al. [2014] proposed the conformable fractional derivative, which obeys chain rule and the Leibniz rule. In this paper, motivated by the monograph of Jibin Li [Li, 2013], we study the exact traveling wave solutions for a class of third-order MKdV equations with the conformable fractional derivative. Our approach is based on the bifurcation theory of planar dynamical systems, which is much different from the simplest equation method proposed in [Chen & Jiang, 2018]. By employing the traveling wave transformation [Formula: see text] [Formula: see text], we reduce the PDE to an ODE which depends on the fractional order [Formula: see text], then the analysis depends on the order [Formula: see text]. Moreover, as [Formula: see text], the exact solutions are consistent with the integer PDE. However, in all the existing papers, the reduced ODE is independent of the fractional order [Formula: see text]. It is believed that this method can be applicable to solve the other nonlinear differential equations with the conformable fractional derivative.


2017 ◽  
Vol 22 (4) ◽  
pp. 503-513 ◽  
Author(s):  
Fei Wang ◽  
Yongqing Yang

This paper investigates fractional order Barbalat’s lemma and its applications for the stability of fractional order nonlinear systems with Caputo fractional derivative at first. Then, based on the relationship between Caputo fractional derivative and Riemann-Liouville fractional derivative, fractional order Barbalat’s lemma with Riemann-Liouville derivative is derived. Furthermore, according to these results, a set of new formulations of Lyapunov-like lemmas for fractional order nonlinear systems are established. Finally, an example is presented to verify the theoretical results in this paper.


2015 ◽  
Vol 08 (06) ◽  
pp. 1550079
Author(s):  
M. Javidi ◽  
N. Nyamoradi

In this paper, we investigate the dynamical behavior of a fractional order phytoplankton–zooplankton system. In this paper, stability analysis of the phytoplankton–zooplankton model (PZM) is studied by using the fractional Routh–Hurwitz stability conditions. We have studied the local stability of the equilibrium points of PZM. We applied an efficient numerical method based on converting the fractional derivative to integer derivative to solve the PZM.


Fractals ◽  
2020 ◽  
Vol 28 (04) ◽  
pp. 2050070 ◽  
Author(s):  
CONG WU

In this paper, we work on a general comparison principle for Caputo fractional-order ordinary differential equations. A full result on maximal solutions to Caputo fractional-order systems is given by using continuation of solutions and a newly proven formula of Caputo fractional derivatives. Based on this result and the formula, we prove a general fractional comparison principle under very weak conditions, in which only the Caputo fractional derivative is involved. This work makes up deficiencies of existing results.


2010 ◽  
Vol 43 (4) ◽  
Author(s):  
Saïd Abbas ◽  
Mouffak Benchohra

AbstractIn this paper we investigate the existence of solutions of a class of partial impulsive hyperbolic differential inclusions involving the Caputo fractional derivative. Our main tools are appropriate fixed point theorems from multivalued analysis.


Sign in / Sign up

Export Citation Format

Share Document