scholarly journals Influence of drying method on chemical and physical properties and in vitro degradation characteristics of grass and maize samples

1995 ◽  
Vol 44 (Suppl. 1) ◽  
pp. 174-174
Author(s):  
JW Cone ◽  
AH van Gelder ◽  
HJP Marvin
1996 ◽  
Vol 126 (1) ◽  
pp. 7-14 ◽  
Author(s):  
J. W. Cone ◽  
A. H. Van Gelder ◽  
H. J. P. Marvin

SUMMARYThe influence of different drying conditions on the chemical composition, physical properties,in vitroorganic matter degradability and fermentation kinetics of forages was investigated using young and old grass (Lolium perenne) samples (harvested on 15 June and 9 July 1992 at Lelystad, The Netherlands) and young and old maize (Zea mayscv. Scana) stem samples (harvested on 19 August and 30 September 1991 at Lelystad). The samples were either freeze-dried with a maximum sample temperature of 10 °C, dried in a vacuum at 20 °C or air-dried at 30, 50, 70 and 105 °C. The different drying methods had little effect on ash, acid detergent fibre (ADF), acid detergent lignin (ADL), crude fibre and crude protein (CP) contents andin vitrodegradation of the forage samples. However, some effects were found for sugars and phenolic acids. The neutral detergent fibre (NDF) content in protein-rich samples and the fermentation kinetics in rumen fluid differed significantly according to drying method. In samples dried other than by freeze-drying, proteins were bound to the NDF content and in some cases an effect on the amount of soluble sugars was also seen. Physical properties of the samples were determined by differential scanning calorimetry (DSC) and differences were found between freeze-dried materials and those dried at 70 °C. The influence of age on the maize samples was very pronounced, whereas it had little effect on the characteristics of the grass samples, with the exception of a decreased CP content and an increased sugar content after acid hydrolysis.


2017 ◽  
Vol 18 (4) ◽  
pp. 1419-1425 ◽  
Author(s):  
Jason M. Walker ◽  
Emily Bodamer ◽  
Olivia Krebs ◽  
Yuanyuan Luo ◽  
Alex Kleinfehn ◽  
...  

2001 ◽  
Vol 8 (6) ◽  
pp. 423-428 ◽  
Author(s):  
Krisztina Jost ◽  
Jozsef Varga ◽  
Botond Pence ◽  
Marta Zarandi

Materials ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 295 ◽  
Author(s):  
Sébastien Champagne ◽  
Ehsan Mostaed ◽  
Fariba Safizadeh ◽  
Edward Ghali ◽  
Maurizio Vedani ◽  
...  

Absorbable metals have potential for making in-demand rigid temporary stents for the treatment of urinary tract obstruction, where polymers have reached their limits. In this work, in vitro degradation behavior of absorbable zinc alloys in artificial urine was studied using electrochemical methods and advanced surface characterization techniques with a comparison to a magnesium alloy. The results showed that pure zinc and its alloys (Zn–0.5Mg, Zn–1Mg, Zn–0.5Al) exhibited slower corrosion than pure magnesium and an Mg–2Zn–1Mn alloy. The corrosion layer was composed mostly of hydroxide, carbonate, and phosphate, without calcium content for the zinc group. Among all tested metals, the Zn–0.5Al alloy exhibited a uniform corrosion layer with low affinity with the ions in artificial urine.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2644
Author(s):  
Jan Oszmiański ◽  
Sabina Lachowicz ◽  
Paulina Nowicka ◽  
Paweł Rubiński ◽  
Tomasz Cebulak

The present study aimed to evaluate the effect of Jerusalem artichoke processing methods and drying methods (freeze drying, sublimation drying, vacuum drying) on the basic physicochemical parameters, profiles and contents of sugars and polyphenolic compounds, and health-promoting properties (antioxidant activity, inhibition of the activities of α-amylase, α-glucosidase, and pancreatic lipase) of the produced purée. A total of 25 polyphenolic compounds belonging to hydroxycinnamic phenolic acids (LC-PDA-MS-QTof) were detected in Jerusalem artichoke purée. Their average content in the raw material was at 820 mg/100 g dm (UPLC-PDA-FL) and was 2.7 times higher than in the cooked material. The chemical composition and the health-promoting value of the purées were affected by the drying method, with the most beneficial values of the evaluated parameters obtained upon freeze drying. Vacuum drying could offer an alternative to freeze drying, as both methods ensured relatively comparable values of the assessed parameters.


2021 ◽  
Vol 7 (6) ◽  
pp. eaba2458
Author(s):  
Weier Bao ◽  
Falin Tian ◽  
Chengliang Lyu ◽  
Bin Liu ◽  
Bin Li ◽  
...  

The poor understanding of the complex multistep process taken by nanocarriers during the delivery process limits the delivery efficiencies and further hinders the translation of these systems into medicine. Here, we describe a series of six self-assembled nanocarrier types with systematically altered physical properties including size, shape, and rigidity, as well as both in vitro and in vivo analyses of their performance in blood circulation, tumor penetration, cancer cell uptake, and anticancer efficacy. We also developed both data and simulation-based models for understanding the influence of physical properties, both individually and considered together, on each delivery step and overall delivery process. Thus, beyond finding that nanocarriers that are simultaneously endowed with tubular shape, short length, and low rigidity outperformed the other types, we now have a suit of theoretical models that can predict how nanocarrier properties will individually and collectively perform in the multistep delivery of anticancer therapies.


Sign in / Sign up

Export Citation Format

Share Document