scholarly journals Improving energy efficiency of school buildings during winter season using passive design strategies

2020 ◽  
Vol 5 ◽  
pp. 1 ◽  
Author(s):  
Sahar Zahiri ◽  
Hasim Altan

Passive building design can improve energy efficiency of buildings, while providing comfortable indoor environment for occupants with minimum mechanical energy use. The foundation of passive design depends on natural sources of energy, which uses building architecture and surrounding environment to minimise heating and cooling loads of buildings with minimum operating and maintenance costs. The correlation of local climate with shape and thermal performance of buildings is one of the main considerations of passive design approach to reduce energy use and increase thermal comfort of occupants. This paper focuses on a series of field studies and building simulation analysis to improve thermal performance of female secondary school buildings in the city of Tehran in Iran during winter season using passive design strategies. The field studies included measuring indoor air temperature, as well as a questionnaire-based survey in a cold winter season in a typical female secondary school building. The on-site monitoring assessed indoor air temperature of classrooms while the occupants completed questionnaires covering their thermal sensations and thermal preferences. Moreover, building thermal simulation analysis were carried out using DesignBuilder tool to evaluate and improve thermal performance of classrooms based on students' thermal requirements and passive design strategies. The simulation analysis started from the basic school building model, investigating various passive design strategies to predict the optimum design strategies for the case study. The simulation results determined how to provide classrooms that are more comfortable for students with minimum energy use. The results of the field studies indicated that indoor thermal environment were usually comfortable for female students based on 7-point ASHRAE scale. However, most of the occupants preferred their indoor thermal environment to be improved. Moreover, simulation results showed that building fabrics and thermal properties, as well as glazing and orientation had significant impacts on indoor air temperature and thermal comfort and using appropriate passive design strategies could improve energy efficiency of the building considerably. Therefore, in order to enhance indoor thermal environment and to increase learning performance of students, it is necessary to use appropriate low energy methods, which can reduce the needs for mechanical energy systems and hence save energy.

Buildings ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 4 ◽  
Author(s):  
Rajan KC ◽  
Hom Rijal ◽  
Masanori Shukuya ◽  
Kazui Yoshida

A home energy management system (HEMS) shows the energy used indoors so that the energy waste can be easily identified and reduced. Thermal comfort is related to the trend of energy use in buildings. We conducted a survey in a condominium equipped with a HEMS to determine the indoor thermal environment and various behaviors of the occupants taken for thermal comfort adjustment. The results showed that there is a large variation of indoor air temperatures according to season, floor and flat. We categorized families into two groups, one with higher and the other with lower average indoor temperatures. The indoor air temperature of the higher temperature group in summer was found to be higher than the recommended indoor temperature during the summer season in Japan. The higher temperature group tended to adopt behaviors, such as window opening and using a fan more often, than the lower temperature group. Due to the moderately high insulating levels in the building surveyed, the indoor air temperature of both groups was not low in winter. Heating was used less and irregular. The overall results indicate that the groups of families behaved differently to adjust the indoor thermal environment even though they were equipped with the same HEMS system.


2019 ◽  
Vol 11 (22) ◽  
pp. 6471 ◽  
Author(s):  
Rui ◽  
Zhang ◽  
Shi ◽  
Pan ◽  
Chen ◽  
...  

Despite their high energy consumption, rural residential houses in the hot summer and cold winter (HSCW) zone still have a generally poor indoor thermal environment. The objective of this study was to understand the current status of the indoor thermal environment for rural residential houses in the HSCW zone and analyze its cause in order to develop some strategies for improvement through passive design of the building envelope. Face-to-face questionnaires and interviews, air-tightness testing, and temperature and humidity monitoring were conducted to understand the building envelope, energy consumption, and indoor thermal environment. Then, some passive design strategies were simulated, including the application of functional interior materials such as hygroscopic and phase change materials. An overall passive design for the building envelope can increase the room temperature by 3.6 °C, reduce the indoor relative humidity by 12% in the winter, and reduce the room temperature by 4.4 °C in the summer. In addition, the annual energy-saving rate can reach ~35%.


2020 ◽  
pp. 014459872096921
Author(s):  
Yanru Li ◽  
Enshen Long ◽  
Lili Zhang ◽  
Xiangyu Dong ◽  
Suo Wang

In the Yangtze River zone of China, the heating operation in buildings is mainly part-time and part-space, which could affect the indoor thermal comfort while making the thermal process of building envelope different. This paper proposed to integrate phase change material (PCM) to building walls to increase the indoor thermal comfort and attenuate the temperature fluctuations during intermittent heating. The aim of this study is to investigate the influence of this kind of composite phase change wall (composite-PCW) on the indoor thermal environment and energy consumption of intermittent heating, and further develop an optimization strategy of intermittent heating operation by using EnergyPlus simulation. Results show that the indoor air temperature of the building with the composite-PCW was 2–3°C higher than the building with the reference wall (normal foamed concrete wall) during the heating-off process. Moreover, the indoor air temperature was higher than 18°C and the mean radiation temperature was above 20°C in the first 1 h after stopping heating. Under the optimized operation condition of turning off the heating device 1 h in advance, the heat release process of the composite-PCW to the indoor environment could maintain the indoor thermal environment within the comfortable range effectively. The composite-PCW could decrease 4.74% of the yearly heating energy consumption compared with the reference wall. The optimization described can provide useful information and guidance for the energy saving of intermittently heated buildings.


2017 ◽  
Author(s):  
Behrang Chenari ◽  
Francisco Bispo Lamas ◽  
Adélio Rodrigues Gaspar ◽  
Manuel Gameiro da Silva

A significant amount of energy is being used by ventilation and air conditioning systems to maintain the indoor environmental condition in a satisfactory and comfortable level. Many buildings, either new or existing (throughout their renovation process) are subjected to energy efficiency requirements but these must not be in the expenses of indoor environmental conditions. For instance, indoor air quality (IAQ) has to be considered while improving energy efficiency, otherwise occupants might be exposed to inappropriate indoor environment.Demand-controlled ventilation (DCV) is a method that provides comfortable IAQ level with lowest energy use. In this paper, the main objective is developing a new CO2-based DCV strategy and simulating it using EnergyPlus. The IAQ and energy consumption associated to this strategy have been compared with the results of CO2-based DCV strategies previously developed by the same authors in another article. The comparison shows that the new strategy performs better, both in energy use and IAQ. The recorded energy savings ranged between 6-14% comparing with the previously developed strategies while IAQ slightly improved.


2020 ◽  
Vol 15 (3) ◽  
pp. 163-170
Author(s):  
Rajan KC ◽  
Hom Bahadur Rijal ◽  
Masanori Shukuya ◽  
Kazui Yoshida

The energy use in residential dwellings has been increasing due to increasing use of modern electric appliances to make the lifestyle easier, entertaining and better. One of the major purposes of indoor energy use is for improving indoor thermal environment for adjusting thermal comfort. Along with the use of passive means like the use of mechanical devices, the occupants in any dwellings use active means such as the use of natural ventilation, window opening, and clothing adjustment. In fact, the use of active means when the outdoor environment is good enough might be more suitable to improve indoor thermal environment than the use of mechanical air conditioning units, which necessarily require electricity. Therefore, the people in developing countries like Nepal need to understand to what extent the occupants can use active means to manage their own indoor thermal comfort. The use of active means during good outdoor environment might be an effective way to manage increasing energy demand in the future. We have made a field survey on the occupants’ adaptive behaviors for thermal comfort in a Japanese condominium equipped with Home Energy Management System (HEMS). Online questionnaire survey was conducted in a condominium with 356 families from November 2015 to October 2016 to understand the occupants’ behaviors. The number of 17036 votes from 39 families was collected. The indoor air temperature, relative humidity and illuminance were measured at the interval of 2-10 minutes to know indoor thermal environmental conditions. The occupants were found using different active behaviors for thermal comfort adjustments even in rather harsh summer and winter. Around 80% of the occupants surveyed opened windows when the outdoor air temperature was 30⁰C in free running (FR) mode and the clothing insulation was 0.93 clo when the outdoor air temperature was 0⁰C. The result showed that the use of mechanical heating and cooling was not necessarily the first priority to improve indoor thermal environment. Our result along with other results in residential buildings showed that the adaptive behaviors of the occupants are one of the primary ways to adjust indoor thermal comfort. This fact is important in enhancing the energy saving building design.


2011 ◽  
Vol 20 (1) ◽  
pp. 101-111 ◽  
Author(s):  
Baizhan Li ◽  
Wei Yu ◽  
Meng Liu ◽  
Nan Li

Yangtze River Valley is situated within the Hot Summer and Cold Winter zone, and residents in this region of China would require HVAC system to alleviate thermal comfort conditions, although this is tempered by the Design Code (DBJ50-071-2007) for energy efficiency. A 1-year survey of about 200 residential homes was carried out in eight cities covering the breadth of the region. The acceptable temperature range for the residents in this area was 16.3—28.1°C and the thermal neutral temperature was found to be 27.6°C in summers and 17.5°C in winters. People in different area can vary in their adaptability and comfortableness. Therefore, there is a need to investigate the national comfort parameter introduced in the Code for Design of Heating and Ventilation and Air Conditioning (GB50019-2003). The results found that if air-conditioning system was set to 27.5°C instead of 26°C as required by GBJ19-87: Design Standard of Heating and Ventilation and Air Conditioning, a 16.5% saving of energy consumption could be achieved. The findings demonstrated the role of natural ventilation in the expansion of the thermal comfort zone for the residents, especially during the summer seasons. A climatic adaptability model has been established by this study to contribute to the passive climatic design strategies for a better economic and energy efficiency of buildings.


2019 ◽  
Author(s):  
Sarah Luziani ◽  
Beta Paramita

Commercial buildings are buildings that spend a lot of energy. This is reinforced by the data that the city that has an expenditure center in Indonesia. To allow energy use can be solved by passive design in architecture. In this study, energy calculations will be carried out using the Autodesk Revit application where previously there was no discussion about energy use at the center using Autodesk Green Building Studio (GBS) analysis by comparing one building with the use of materials differently. The method used in this study is creating three scenarios. Where the scenario B-01 is using a lot of glass but given a double facade in the north, east and south, B-02 is little use of glass and no double skin façade, the B-03 many openings without façade double skin. Each scenario is simulated and results. From the results of Autodesk GBS discussion in the EUI category, Life Cycle Energy Use, Carbon Emissions, and also the Use of Electricity. From the comparison of some of the most optimal scenario categories in energy is scenario B-01. In the simulated Shopping Center building in Autodesk GBS, buildings with more use of glass and openings will be more efficient in energy use.


2020 ◽  
Vol 194 ◽  
pp. 05013
Author(s):  
Xiaowei Hong ◽  
Guangjin Zhang ◽  
Yufeng Zhang

Indoor thermal environment of Hui style traditional houses is depended on surrounding environments, building layouts and envelope. Quantitative analysis of the effects of building layouts and envelope on indoor thermal environment is of great significance for preventions of traditional houses and design of new archaized houses. A field investigation was conducted on thirty-six traditional houses from nine villages in Wuyuan, and the typical buildings’ layout and envelope were determined. Four traditional buildings in different location in Wuyuan were selected for continual recording. The four buildings with four types of building layouts and envelope were analyzed by using local adaptive thermal comfort model, and the effects of building layouts and envelope of traditional buildings were clearly revealed. The most crucial way to improve indoor thermal environment in Hui style traditional buildings was raising the indoor air temperature.


2011 ◽  
Vol 280 ◽  
pp. 147-151 ◽  
Author(s):  
Hong Guo ◽  
Min Fang Su ◽  
Xiao Jun Jin

Based on the current energy consumption situation of existing masonry-concrete residential buildings in China, it discussed the main energy-saving renovation policies and technologies. Taking existing masonry-concrete residential building of Taiyuan city as a case, it analyzed its heat loss situations, energy-saving renovation design and reconstruction technologies of building envelope. It discussed energy-saving renovation effects. Energy efficiency and indoor thermal environment improved significantly after energy-saving renovation. The building life is extended.


Sign in / Sign up

Export Citation Format

Share Document