scholarly journals Past, Present and Future With p-Values, Confidence Intervals and Effect Sizes

2021 ◽  
Vol 60 (3) ◽  
pp. 642-643
Author(s):  
Aleksi Reito
2016 ◽  
Vol 156 (6) ◽  
pp. 978-980 ◽  
Author(s):  
Peter M. Vila ◽  
Melanie Elizabeth Townsend ◽  
Neel K. Bhatt ◽  
W. Katherine Kao ◽  
Parul Sinha ◽  
...  

There is a lack of reporting effect sizes and confidence intervals in the current biomedical literature. The objective of this article is to present a discussion of the recent paradigm shift encouraging the use of reporting effect sizes and confidence intervals. Although P values help to inform us about whether an effect exists due to chance, effect sizes inform us about the magnitude of the effect (clinical significance), and confidence intervals inform us about the range of plausible estimates for the general population mean (precision). Reporting effect sizes and confidence intervals is a necessary addition to the biomedical literature, and these concepts are reviewed in this article.


2009 ◽  
Vol 217 (1) ◽  
pp. 15-26 ◽  
Author(s):  
Geoff Cumming ◽  
Fiona Fidler

Most questions across science call for quantitative answers, ideally, a single best estimate plus information about the precision of that estimate. A confidence interval (CI) expresses both efficiently. Early experimental psychologists sought quantitative answers, but for the last half century psychology has been dominated by the nonquantitative, dichotomous thinking of null hypothesis significance testing (NHST). The authors argue that psychology should rejoin mainstream science by asking better questions – those that demand quantitative answers – and using CIs to answer them. They explain CIs and a range of ways to think about them and use them to interpret data, especially by considering CIs as prediction intervals, which provide information about replication. They explain how to calculate CIs on means, proportions, correlations, and standardized effect sizes, and illustrate symmetric and asymmetric CIs. They also argue that information provided by CIs is more useful than that provided by p values, or by values of Killeen’s prep, the probability of replication.


Transfusion ◽  
2011 ◽  
Vol 52 (6) ◽  
pp. 1169-1171 ◽  
Author(s):  
Ingrid Veldhuizen ◽  
Pieternel Pasker-De Jong ◽  
Femke Atsma

2010 ◽  
Vol 3 (2) ◽  
pp. 106-112 ◽  
Author(s):  
Matthew J. Rinella ◽  
Jeremy J. James

AbstractNull hypothesis significance testing (NHST) forms the backbone of statistical inference in invasive plant science. Over 95% of research articles in Invasive Plant Science and Management report NHST results such as P-values or statistics closely related to P-values such as least significant differences. Unfortunately, NHST results are less informative than their ubiquity implies. P-values are hard to interpret and are regularly misinterpreted. Also, P-values do not provide estimates of the magnitudes and uncertainties of studied effects, and these effect size estimates are what invasive plant scientists care about most. In this paper, we reanalyze four datasets (two of our own and two of our colleagues; studies put forth as examples in this paper are used with permission of their authors) to illustrate limitations of NHST. The re-analyses are used to build a case for confidence intervals as preferable alternatives to P-values. Confidence intervals indicate effect sizes, and compared to P-values, confidence intervals provide more complete, intuitively appealing information on what data do/do not indicate.


2021 ◽  
Author(s):  
Willem M Otte ◽  
Christiaan H Vinkers ◽  
Philippe Habets ◽  
David G P van IJzendoorn ◽  
Joeri K Tijdink

Abstract Objective To quantitatively map how non-significant outcomes are reported in randomised controlled trials (RCTs) over the last thirty years. Design Quantitative analysis of English full-texts containing 567,758 RCTs recorded in PubMed (81.5% of all published RCTs). Methods We determined the exact presence of 505 pre-defined phrases denoting results that do not reach formal statistical significance (P<0.05) in 567,758 RCT full texts between 1990 and 2020 and manually extracted associated P values. Phrase data was modeled with Bayesian linear regression. Evidence for temporal change was obtained through Bayes-factor analysis. In a randomly sampled subset, the associated P values were manually extracted. Results We identified 61,741 phrases indicating close to significant results in 49,134 (8.65%; 95% confidence interval (CI): 8.58–8.73) RCTs. The overall prevalence of these phrases remained stable over time, with the most prevalent phrases being ‘marginally significant’ (in 7,735 RCTs), ‘all but significant’ (7,015), ‘a nonsignificant trend’ (3,442), ‘failed to reach statistical significance’ (2,578) and ‘a strong trend’ (1,700). The strongest evidence for a temporal prevalence increase was found for ‘a numerical trend’, ‘a positive trend’, ‘an increasing trend’ and ‘nominally significant’. The phrases ‘all but significant’, ‘approaches statistical significance’, ‘did not quite reach statistical significance’, ‘difference was apparent’, ‘failed to reach statistical significance’ and ‘not quite significant’ decreased over time. In the random sampled subset, the 11,926 identified P values ranged between 0.05 and 0.15 (68.1%; CI: 67.3–69.0; median 0.06). Conclusions Our results demonstrate that phrases describing marginally significant results are regularly used in RCTs to report P values close to but above the dominant 0.05 cut-off. The phrase prevalence remained stable over time, despite all efforts to change the focus from P < 0.05 to reporting effect sizes and corresponding confidence intervals. To improve transparency and enhance responsible interpretation of RCT results, researchers, clinicians, reviewers, and editors need to abandon the focus on formal statistical significance thresholds and stimulate reporting of exact P values with corresponding effect sizes and confidence intervals. Significance statement The power of language to modify the reader’s perception of how to interpret biomedical results cannot be underestimated. Misreporting and misinterpretation are urgent problems in RCT output. This may be at least partially related to the statistical paradigm of the 0.05 significance threshold. Sometimes, creativity and inventive strategies of clinical researchers may be used – describing their clinical results to be ‘almost significant’ – to get their data published. This phrasing may convince readers about the value of their work. Since 2005 there is an increasing concern that most current published research findings are false and it has been generally advised to switch from null hypothesis significance testing to using effect sizes, estimation, and cumulation of evidence. If this ‘new statistics’ approach has worked out well should be reflected in the phases describing non-significance results of RCTs. In particular in changing patterns describing P values just above 0.05 value. More than five hundred phrases potentially suited to report or discuss non-significant results were searched in over half a million published RCTs. A stable overall prevalence of these phrases (10.87%, CI: 10.79–10.96; N: 61,741), with associated P values close to 0.05, was found in the last three decades, with strong increases or decreases in individual phrases describing these near-significant results. The pressure to pass scientific peer-review barrier may function as an incentive to use effective phrases to mask non-significant results in RCTs. However, this keeps the researcher’s pre-occupied with hypothesis testing rather than presenting outcome estimations with uncertainty. The effect of language on getting RCT results published should ideally be minimal to steer evidence-based medicine away from overselling of research results, unsubstantiated claims about the efficacy of certain RCTs and to prevent an over-reliance on P value cutoffs. Our exhaustive search suggests that presenting RCT findings remains a struggle when P values approach the carved-in-stone threshold of 0.05.


Econometrics ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 26 ◽  
Author(s):  
David Trafimow

There has been much debate about null hypothesis significance testing, p-values without null hypothesis significance testing, and confidence intervals. The first major section of the present article addresses some of the main reasons these procedures are problematic. The conclusion is that none of them are satisfactory. However, there is a new procedure, termed the a priori procedure (APP), that validly aids researchers in obtaining sample statistics that have acceptable probabilities of being close to their corresponding population parameters. The second major section provides a description and review of APP advances. Not only does the APP avoid the problems that plague other inferential statistical procedures, but it is easy to perform too. Although the APP can be performed in conjunction with other procedures, the present recommendation is that it be used alone.


Sign in / Sign up

Export Citation Format

Share Document