Social Asymmetry, Artificial Intelligence and the Medical Imaging Landscape

Author(s):  
Geoffrey Currie ◽  
Eric Rohren
2020 ◽  
Author(s):  
Ying Liu ◽  
Ziyan Yu ◽  
Shuolan Jing ◽  
Honghu Jiang ◽  
Chunxia Wang

BACKGROUND Artificial intelligence (AI) has penetrated into almost every aspect of our lives and is rapidly changing our way of life. Recently, the new generation of AI taking machine learning and particularly deep convolutional neural network theories as the core technology, has stronger learning ability and independent learning evolution ability, combined with a large amount of learning data, breaks through the bottleneck limit of model accuracy, and makes the model efficient use. OBJECTIVE To identify the 100 most cited papers in artificial intelligence in medical imaging, we performed a comprehensive bibliometric analysis basing on the literature search on Web of Science Core Collection (WoSCC). METHODS The 100 top-cited articles published in “AI, Medical imaging” journals were identified using the Science Citation Index Database. The articles were further reviewed, and basic information was collected, including the number of citations, journals, authors, publication year, and field of study. RESULTS The highly cited articles in AI were cited between 72 and 1,554 times. The majority of them were published in three major journals: IEEE Transactions on Medical Imaging, Medical Image Analysis and Medical Physics. The publication year ranged from 2002 to 2019, with 66% published in a three-year period (2016 to 2018). Publications from the United States (56%) were the most heavily cited, followed by those from China (15%) and Netherlands (10%). Radboud University Nijmegen from Netherlands, Harvard Medical School in USA, and The Chinese University of Hong Kong in China produced the highest number of publications (n=6). Computer science (42%), clinical medicine (35%), and engineering (8%) were the most common fields of study. CONCLUSIONS Citation analysis in the field of artificial intelligence in medical imaging reveals interesting information about the topics and trends negotiated by researchers and elucidates which characteristics are required for a paper to attain a “classic” status. Clinical science articles published in highimpact specialized journals are most likely to be cited in the field of artificial intelligence in medical imaging.


2021 ◽  
Vol 76 ◽  
pp. 6-14
Author(s):  
Narjes Benameur ◽  
Ramzi Mahmoudi ◽  
Soraya Zaid ◽  
Younes Arous ◽  
Badii Hmida ◽  
...  

Encyclopedia ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 220-239
Author(s):  
Sarkar Siddique ◽  
James C. L. Chow

Machine learning (ML) is a study of computer algorithms for automation through experience. ML is a subset of artificial intelligence (AI) that develops computer systems, which are able to perform tasks generally having need of human intelligence. While healthcare communication is important in order to tactfully translate and disseminate information to support and educate patients and public, ML is proven applicable in healthcare with the ability for complex dialogue management and conversational flexibility. In this topical review, we will highlight how the application of ML/AI in healthcare communication is able to benefit humans. This includes chatbots for the COVID-19 health education, cancer therapy, and medical imaging.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Andre Esteva ◽  
Katherine Chou ◽  
Serena Yeung ◽  
Nikhil Naik ◽  
Ali Madani ◽  
...  

AbstractA decade of unprecedented progress in artificial intelligence (AI) has demonstrated the potential for many fields—including medicine—to benefit from the insights that AI techniques can extract from data. Here we survey recent progress in the development of modern computer vision techniques—powered by deep learning—for medical applications, focusing on medical imaging, medical video, and clinical deployment. We start by briefly summarizing a decade of progress in convolutional neural networks, including the vision tasks they enable, in the context of healthcare. Next, we discuss several example medical imaging applications that stand to benefit—including cardiology, pathology, dermatology, ophthalmology–and propose new avenues for continued work. We then expand into general medical video, highlighting ways in which clinical workflows can integrate computer vision to enhance care. Finally, we discuss the challenges and hurdles required for real-world clinical deployment of these technologies.


PET Clinics ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. 493-511
Author(s):  
Abhinav K. Jha ◽  
Kyle J. Myers ◽  
Nancy A. Obuchowski ◽  
Ziping Liu ◽  
Md Ashequr Rahman ◽  
...  

2021 ◽  
Author(s):  
Lamija Hafizovic ◽  
Aldijana Causevic ◽  
Amar Deumic ◽  
Lemana Spahic Becirovic ◽  
Lejla Gurbeta Pokvic ◽  
...  

2019 ◽  
Vol 8 (4) ◽  
pp. 462 ◽  
Author(s):  
Muhammad Owais ◽  
Muhammad Arsalan ◽  
Jiho Choi ◽  
Kang Ryoung Park

Medical-image-based diagnosis is a tedious task‚ and small lesions in various medical images can be overlooked by medical experts due to the limited attention span of the human visual system, which can adversely affect medical treatment. However, this problem can be resolved by exploring similar cases in the previous medical database through an efficient content-based medical image retrieval (CBMIR) system. In the past few years, heterogeneous medical imaging databases have been growing rapidly with the advent of different types of medical imaging modalities. Recently, a medical doctor usually refers to various types of imaging modalities all together such as computed tomography (CT), magnetic resonance imaging (MRI), X-ray, and ultrasound, etc of various organs in order for the diagnosis and treatment of specific disease. Accurate classification and retrieval of multimodal medical imaging data is the key challenge for the CBMIR system. Most previous attempts use handcrafted features for medical image classification and retrieval, which show low performance for a massive collection of multimodal databases. Although there are a few previous studies on the use of deep features for classification, the number of classes is very small. To solve this problem, we propose the classification-based retrieval system of the multimodal medical images from various types of imaging modalities by using the technique of artificial intelligence, named as an enhanced residual network (ResNet). Experimental results with 12 databases including 50 classes demonstrate that the accuracy and F1.score by our method are respectively 81.51% and 82.42% which are higher than those by the previous method of CBMIR (the accuracy of 69.71% and F1.score of 69.63%).


Sign in / Sign up

Export Citation Format

Share Document