The Structure and Function of the Helical Heart and Its Buttress Wrapping. I. The Normal Macroscopic Structure of the Heart

2001 ◽  
Vol 13 (4) ◽  
pp. 301-319 ◽  
Author(s):  
Francisco Torrent-Guasp ◽  
Gerald D. Buckberg ◽  
Carmine Clemente ◽  
James L. Cox ◽  
H. Cecil Coghlan ◽  
...  
2021 ◽  
Vol 23 (101) ◽  
pp. 75-81
Author(s):  
T. F. Kot ◽  
S. K. Rudik ◽  
S. V. Guralska ◽  
S. S. Zaika ◽  
Z. V. Khomenko

The analysis of scientific literature shows that the study of adrenal morphology in humans and animals is an urgent problem of biology and medicine from ancient times to the present day. In the historical aspect, we can distinguish three stages of studying the adrenal gland that differ in the directions of research. The first stage corresponds to the research of scientists of the XVI–XVIII centuries (Bartolomeo Eustachio, Andreas Vesalius, Gabriele Folloppio, Girolamo Fabrici, Andriaan Spieghel, Johann Vesling, Giulia Casseria, Caspar Bauhin, Johann Grafenberg, Caspar Bartholin, Thomas Bartholin, Giulio Casserio, Antonio Molinetti, Jean Riolan, Thomas Wharton, Giovanni Lancisi, Jakob Winslow, Antony Valsalva, Albrecht Haller, Johann Meckel, Jean Senac, Armand Cassan). Their works is devoted to the study of topography, macroscopic structure and function of the adrenal gland. Studies of morphological scientists of the second stage (late XVIII – mid XX century) correspond to the study of the structure of the adrenal gland at the microscopic level. Scientists like Albert Kelliker, Johann Ecker, Thomas Addison, Gabriel Colin, Alfred Kohn and Jay Arnold used histological and histochemical research methods. Edward Schafer, George Oliver, Vladislav Szymonowicz, John Abel, Jokiti Takmine, Welter Cannon, Edward Kendall to the study of the features of adrenal hormone secretion. Scientific works of the mid-twentieth and early twenty-first centuries can be combined in the third stage of research on the morphology of the adrenal gland. It is devoted to solving issues related to the formation of the adrenal gland in the process of filogenesis and ontogenesis, the features of the structure and function of the organ in normal and pathological conditions. A significant contribution to the study of the morphology of the adrenal gland of animals at the third stage was made by such scientists as Ziyade A. M., Dardykina O. N., Harina V. V., Atagimov M. Z., Torguj P. M., Antipin I. A., Shishkin A. P., Volkova M. V., Shevchenko L. F., Sidorova O. G., Vovchenko M. B., Salekh M. M., Ovcharenko N. D., Zaika S. V., Samatova I. M., Gorbacheva E. S., Pronin V. V., Kuznecov A. V., Pashinin N. S., Strel’nikova I. G., Barvenko A. D., Fedotov D. N., Izatulin A. V., Kvarackheliya A. G., Silkina A. V., Muhametov A. I. Among the studies of morphologists of the third period, the method of electron microscopy prevails.


Author(s):  
Peter Sterling

The synaptic connections in cat retina that link photoreceptors to ganglion cells have been analyzed quantitatively. Our approach has been to prepare serial, ultrathin sections and photograph en montage at low magnification (˜2000X) in the electron microscope. Six series, 100-300 sections long, have been prepared over the last decade. They derive from different cats but always from the same region of retina, about one degree from the center of the visual axis. The material has been analyzed by reconstructing adjacent neurons in each array and then identifying systematically the synaptic connections between arrays. Most reconstructions were done manually by tracing the outlines of processes in successive sections onto acetate sheets aligned on a cartoonist's jig. The tracings were then digitized, stacked by computer, and printed with the hidden lines removed. The results have provided rather than the usual one-dimensional account of pathways, a three-dimensional account of circuits. From this has emerged insight into the functional architecture.


Author(s):  
K.E. Krizan ◽  
J.E. Laffoon ◽  
M.J. Buckley

With increase use of tissue-integrated prostheses in recent years it is a goal to understand what is happening at the interface between haversion bone and bulk metal. This study uses electron microscopy (EM) techniques to establish parameters for osseointegration (structure and function between bone and nonload-carrying implants) in an animal model. In the past the interface has been evaluated extensively with light microscopy methods. Today researchers are using the EM for ultrastructural studies of the bone tissue and implant responses to an in vivo environment. Under general anesthesia nine adult mongrel dogs received three Brånemark (Nobelpharma) 3.75 × 7 mm titanium implants surgical placed in their left zygomatic arch. After a one year healing period the animals were injected with a routine bone marker (oxytetracycline), euthanized and perfused via aortic cannulation with 3% glutaraldehyde in 0.1M cacodylate buffer pH 7.2. Implants were retrieved en bloc, harvest radiographs made (Fig. 1), and routinely embedded in plastic. Tissue and implants were cut into 300 micron thick wafers, longitudinally to the implant with an Isomet saw and diamond wafering blade [Beuhler] until the center of the implant was reached.


Author(s):  
Robert L. Ochs

By conventional electron microscopy, the formed elements of the nuclear interior include the nucleolus, chromatin, interchromatin granules, perichromatin granules, perichromatin fibrils, and various types of nuclear bodies (Figs. 1a-c). Of these structures, all have been reasonably well characterized structurally and functionally except for nuclear bodies. The most common types of nuclear bodies are simple nuclear bodies and coiled bodies (Figs. 1a,c). Since nuclear bodies are small in size (0.2-1.0 μm in diameter) and infrequent in number, they are often overlooked or simply not observed in any random thin section. The rat liver hepatocyte in Fig. 1b is a case in point. Historically, nuclear bodies are more prominent in hyperactive cells, they often occur in proximity to nucleoli (Fig. 1c), and sometimes they are observed to “bud off” from the nucleolar surface.


Author(s):  
M. Boublik ◽  
W. Hellmann ◽  
F. Jenkins

Correlations between structure and function of biological macromolecules have been studied intensively for many years, mostly by indirect methods. High resolution electron microscopy is a unique tool which can provide such information directly by comparing the conformation of biopolymers in their biologically active and inactive state. We have correlated the structure and function of ribosomes, ribonucleoprotein particles which are the site of protein biosynthesis. 70S E. coli ribosomes, used in this experiment, are composed of two subunits - large (50S) and small (30S). The large subunit consists of 34 proteins and two different ribonucleic acid molecules. The small subunit contains 21 proteins and one RNA molecule. All proteins (with the exception of L7 and L12) are present in one copy per ribosome.This study deals with the changes in the fine structure of E. coli ribosomes depleted of proteins L7 and L12. These proteins are unique in many aspects.


2011 ◽  
Vol 21 (3) ◽  
pp. 112-117 ◽  
Author(s):  
Elizabeth Erickson-Levendoski ◽  
Mahalakshmi Sivasankar

The epithelium plays a critical role in the maintenance of laryngeal health. This is evident in that laryngeal disease may result when the integrity of the epithelium is compromised by insults such as laryngopharyngeal reflux. In this article, we will review the structure and function of the laryngeal epithelium and summarize the impact of laryngopharyngeal reflux on the epithelium. Research investigating the ramifications of reflux on the epithelium has improved our understanding of laryngeal disease associated with laryngopharyngeal reflux. It further highlights the need for continued research on the laryngeal epithelium in health and disease.


1973 ◽  
Vol 44 (1-21012) ◽  
pp. 1-1 ◽  
Author(s):  
B BACCETTI ◽  
A BURRINI ◽  
R DALLAI ◽  
V PALLINI ◽  
P PERITI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document