Effects of hypochlorite-modified low-density and high-density lipoproteins on intracellular Ca2+and plasma membrane Ca2+-ATPase activity of human platelets

Cell Calcium ◽  
1999 ◽  
Vol 26 (6) ◽  
pp. 281-287 ◽  
Author(s):  
M. Zabe ◽  
R.E. Feltzer ◽  
E. Malle ◽  
W. Sattler ◽  
W.L. Dean
Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3925-3925
Author(s):  
Kim E Olson ◽  
Joan HF Drosopoulos ◽  
Ashley E Olson ◽  
Marinus Johan Broekman ◽  
Aaron J Marcus

Abstract We have previously shown that CD39 undergoes limited cleavage and that inhibition of proteolysis results in a decrease in ATPase activity. The reduction in enzymatic activity correlated with a decrease in the fraction of full-length CD39 present in active membrane raft-localized oligomeric complexes. We exploited N-and C-terminal VP16-and V5-tagged CD39, both transiently and stably expressed in 293 cells, to further elucidate the role of cleavage in the regulation of CD39 processing and activity. To characterize the complexes generated by cross-linking, N-terminal VP16-tagged and C-terminal V5-tagged CD39 were co-expressed in 293 cells. Following crosslinking of membranes with DTSSP and immunoprecipitation with anti-V5, DTT-cleaved species were visualized by Western Blot using VP16 antibody. Interestingly, both VP16-tagged full-length and N-terminal fragments (30 kDa) were immunoprecipitated by anti-V5. This indicates that both full-length CD39 and the N-terminal cleavage fragment are present in raft-localized complexes. The composition of raft-localized CD39 complexes was studied by separating membrane fractions on a discontinuous sucrose gradient using a non-detergent method. When overexpressed, CD39 and its C-terminal fragment distribute across the gradient as visualized by Western with anti-VP16. Importantly, specific activity (expressed as ATPase activity divided by total CD39 content) was 8 times greater in low-density raft-enriched fractions than in high density raft-free fractions. In addition, relative ADPase activity was higher in fractions containing a higher proportion of C-terminal CD39 relative to full-length CD39. Thus, CD39 forms oligomeric complexes and possesses optimal enzyme activity in lipid rafts. The relationship between CD39 cleavage, ATPase activity and raft localization was further studied in 293 cells transfected with C-or N-terminal VP16-tagged CD39. Subcellular fractionation on a discontinuous sucrose gradient yielded membrane fractions enriched in endoplasmic reticulum (ER), early endosomes (EE) and plasma membrane/Golgi (PM-Golgi). Importantly, the EE fraction contained both full-length and C-terminal (or N-terminal) CD39 at the same level as seen in the PM-Golgi fraction, suggesting that near 50% of CD39 resides in the EE compartment. Furthermore, EE-expressed CD39 exhibited an ATPase and ADPase activity equivalent to that seen in Golgi-PM fractions. This led us to examine effects of NH4Cl and bafilomycin (which block acidification of EE), and chloroquine (blocks EE maturation) on CD39 cleavage, activity and raft localization. Each treatment inhibited CD39 cleavage and correspondingly decreased ATPase activity. A shift of ~50% of full-length CD39 from raft fractions to high density membrane fractions was observed upon sucrose gradient fractionation following chloroquine treatment of cells transfected with N-terminal VP16 tagged CD39. This redistribution of CD39 in the membrane correlated with a 40% decrease in ATPase activity and a striking inhibition of CD39 cleavage. Here, at a lower level of expression than cited above, ATPase activity in low-density raft fractions was ~100-fold greater than in high density fractions. Thus, cleavage of a portion of CD39 molecules is required for both raft localization of full-length CD39 and optimal enzyme activity. Regulated proteolytic cleavage of CD39 would allow for rapid upregulation of CD39 activity in response to alterations in cell environment. This would occur via cycling of CD39 between plasma membrane and endosomal compartments, the proposed site of CD39 cleavage and assembly of fully active oligomeric complexes.


1985 ◽  
Vol 232 (1) ◽  
pp. 71-78 ◽  
Author(s):  
J A Hedo ◽  
I A Simpson

We investigated the biosynthesis of the insulin receptor in primary cultures of isolated rat adipose cells. Cells were pulse-chase-labelled with [3H]mannose, and at intervals samples were homogenized. Three subcellular membrane fractions were prepared by differential centrifugation: high-density microsomal (endoplasmic-reticulum-enriched), low-density microsomal (Golgi-enriched), and plasma membranes. After detergent solubilization, the insulin receptors were immunoprecipitated with anti-receptor antibodies and analysed by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and autoradiography. After a 30 min pulse-label [3H]mannose first appeared in a band of Mr 190 000. More than 80% of the Mr-190 000 component was recovered in the microsomal fractions. Its intensity reached a maximum at 1 h in the high-density microsomal fraction and at 2 h in the low-density microsomal fraction, and thereafter declined rapidly (t 1/2 approx. 3 h) in both fractions. In the plasma-membrane fraction, the radioactivity in the major receptor subunits, of Mr 135 000 (alpha) and 95 000 (beta), rose steadily during the chase and reached a maximum at 6 h. The Mr-190 000 precursor could also be detected in the high-density microsomal fraction by affinity cross-linking to 125I-insulin. In the presence of monensin, a cationic ionophore that interferes with intracellular transport within the Golgi complex, the processing of the Mr-190 000 precursor into the alpha and beta subunits was completely inhibited. Our results suggest that the Mr-190 000 pro-receptor originates in the endoplasmic reticulum and is subsequently transferred to the Golgi complex. Maturation of the pro-receptor does not seem to be necessary for the expression of the insulin-binding site. Processing of the precursor into the mature receptor subunits appears to occur during the transfer of the pro-receptor from the Golgi complex to the plasma membrane.


Sign in / Sign up

Export Citation Format

Share Document