Total and Regional Body Composition of NCAA Division I Collegiate Female Softball Athletes

2019 ◽  
Vol 40 (10) ◽  
pp. 645-649 ◽  
Author(s):  
Madeline A. Czeck ◽  
Christiana J. Raymond-Pope ◽  
Philip R. Stanforth ◽  
Aaron Carbuhn ◽  
Tyler A. Bosch ◽  
...  

AbstractThe purpose of this study was to evaluate total, regional, and throwing versus non-throwing arm body composition measures across the 4 major positions of NCAA Division I female softball players using dual X-ray absorptiometry (DXA) (n=128). Total and regional total mass (TM), fat mass (FM), lean mass (LM), bone mineral density (BMD), bone mineral content (BMC), and visceral adipose tissue were measured. Athletes were separated into: pitchers (n=32), catchers (n=13), outfielders (n=39), and infielders (n=44). ANOVA and Tukey’s HSD assessed total and regional differences between positions. Although no significant total or regional LM differences were observed across positions, outfielders had significantly (p=0.006–0.047) lower total-body, arm, and trunk TM and FM, leg FM, and leg BMC in comparison to pitchers. The throwing arm had significantly (p<0.0001–0.018) greater LM, BMD, and BMC than the non-throwing arm for all positions. Notably, there were minimal body composition differences among softball positions, with the primary differences being that pitchers had larger total and regional fat values than outfielders. The throwing arm of all positions had greater LM, BMD, and BMC than the non-throwing arm. These values can be used by coaches and trainers as descriptive DXA data for collegiate softball players.

2019 ◽  
Vol 40 (07) ◽  
pp. 447-452 ◽  
Author(s):  
Madeline A. Czeck ◽  
Christiana J. Raymond-Pope ◽  
Tyler A. Bosch ◽  
Christopher W. Bach ◽  
Jonathan M. Oliver ◽  
...  

AbstractThis study’s purpose was to evaluate total, regional, and throwing versus non-throwing arm body composition measurements between various positions of NCAA Division I male baseball players using dual X-ray absorptiometry (DXA). Two hundred and one collegiate baseball athletes were measured using DXA. Visceral adipose tissue (VAT), total and regional fat mass (FM), lean mass (LM), and bone mineral density (BMD) were measured. Athletes were separated into: pitchers (n=92), catchers (n=25), outfielders (n=43), and infielders (n=41). ANOVA and Tukey’s honest significant difference assessed total and regional differences between positions. Infielders had significantly (p<0.05) lower total LM than pitchers and outfielders. Additionally, outfielders had significantly lower total FM compared to pitchers and catchers. No significant differences between positions were observed for total BMD and VAT. Pitchers’ and infielders’ throwing arm demonstrated significantly greater total mass, FM, LM, and BMD compared to the non-throwing arm. Further, outfielders’ throwing arm total mass, LM, and BMD were significantly higher vs. the non-throwing arm. Significant differences were observed in total and regional body composition measurements across position, in addition to differences in throwing arm vs. non-throwing arm composition. These measurement values are important to coaches and trainers as normative positional DXA data for collegiate baseball players.


2017 ◽  
Vol 49 (5S) ◽  
pp. 174-175
Author(s):  
Tyler A. Bosch ◽  
Aaron Carbuhn ◽  
Philip R. Stanforth ◽  
Jonathan M. Oliver ◽  
Kathryn A. Keller ◽  
...  

2019 ◽  
Vol 40 (06) ◽  
pp. 404-408 ◽  
Author(s):  
Olivia H. Dengel ◽  
Christiana J. Raymond-Pope ◽  
Tyler A. Bosch ◽  
Jonathan M. Oliver ◽  
Donald R. Dengel

AbstractTo examine measures of total and regional body composition using dual X-ray absorptiometry (DXA) in NCAA Division I collegiate equestrian athletes, 31 female collegiate equestrian athletes were matched to a population of normal controls by age and body mass index. Total and regional fat tissue mass (FM), lean tissue mass (LM), bone mineral density (BMD), and abdominal visceral adipose tissue (VAT) were measured by DXA. Equestrian athletes had a significantly (p=0.03) lower total body fat percentage (%fat) than controls. There were no significant differences in total LM and VAT between equestrian athletes and controls. However, equestrian athletes, when compared to the controls, had significantly lower leg %fat, leg FM and higher leg LM. The greater leg LM in equestrian riders resulted in a smaller upper to lower body LM ratio compared to controls. There was no difference in leg BMD between equestrian athletes and controls. There were no significant differences between the 2 styles of riding (i. e., hunt seat and western style) in regards to body composition. The lower total %fat in equestrian athletes seems to be influenced by differences in leg composition, with equestrian athletes having significantly more LM and less FM.


Author(s):  
Luke Del Vecchio ◽  
Nattai Borges ◽  
Campbell MacGregor ◽  
Jarrod D. Meerkin ◽  
Mike Climstein

Background: Previous research highlighted positive musculoskeletal adaptations resulting from mechanical forces and loadings distinctive to impacts and movements with sports participation. However, little is known about these adaptations in combat athletes. The aim of this study was to quantify bone mineral density, lean muscle mass and punching and kicking power in amateur male combat athletes. Methods: Thirteen male combat athletes (lightweight and middleweight) volunteered all physiological tests including dual energy X-ray absorptiometry for bone mineral density (BMD) segmental body composition (lean muscle mass, LMM), muscle strength and striking power, sedentary controls (n = 15) were used for selected DXA outcome variables. Results: There were significant differences (p < 0.05) between combat groups for lumbar spine (+5.0%), dominant arm (+4.4%) BMD, and dominant and non-dominant leg LMM (+21.8% and +22.6%). Controls had significantly (p < 0.05) high adiposity (+36.8% relative), visceral adipose tissue (VAT) mass (+69.7%), VAT area (+69.5%), lower total body BMD (−8.4%) and lumbar spine BMD (−13.8%) than controls. No differences in lower limb BMD were seen in combat groups. Arm lean mass differences (dominant versus non-dominant) were significantly different between combat groups (p < 0.05, 4.2% versus 7.3%). There were no differences in punch/kick power (absolute or relative) between combat groups. 5RM strength (bench and squat) correlated significantly with upper limb striking power (r = 0.57), dominant and non-dominant leg BMD (r = 0.67, r = 0.70, respectively) and total body BMD (r = 0.59). Conclusion: BMD and LMM appear to be particularly important to discriminate between dominant and non-dominant upper limbs and less so for lower limb dominance in recreational combat athletes.


2018 ◽  
Vol 3 (4) ◽  
pp. 62
Author(s):  
Jose Antonio ◽  
Anya Ellerbroek ◽  
Cassandra Carson

The effects of long-term high-protein consumption (i.e., >2.2 g/kg/day) are unclear as it relates to bone mineral content. Thus, the primary endpoint of this investigation was to determine if consuming a high-protein diet for one year affected various parameters of body composition in exercise-trained women. This investigation is a follow-up to a prior 6-month study. Subjects were instructed to consume a high-protein diet (>2.2 g/kg/day) for one year. Body composition was assessed via dual-energy X-ray absorptiometry (DXA). Subjects were instructed to keep a food diary (i.e., log their food ~three days per week for a year) via the mobile app MyFitnessPal®. Furthermore, a subset of subjects had their blood analyzed (i.e., basic metabolic panel). Subjects consumed a high-protein diet for one year (mean ± SD: 2.3 ± 1.1 grams per kilogram body weight daily [g/kg/day]). There were no significant changes for any measure of body composition over the course of the year (i.e., body weight, fat mass, lean body mass, percent fat, whole body bone mineral content, whole body T-score, whole body bone mineral density, lumbar bone mineral content, lumbar bone mineral density and lumbar T-score). In addition, we found no adverse effects on kidney function. Based on this 1-year within-subjects investigation, it is evident that a diet high in protein has no adverse effects on bone mineral density or kidney function.


2020 ◽  
Vol 52 (7S) ◽  
pp. 867-867
Author(s):  
Erica Roelofs ◽  
April Bockin ◽  
Tyler A. Bosch ◽  
Christopher W. Bach ◽  
Jonathan M. Oliver ◽  
...  

2017 ◽  
Vol 49 (5S) ◽  
pp. 256
Author(s):  
Donald R. Dengel ◽  
Kathryn A. Keller ◽  
Aaron F. Carbuhn ◽  
Philip R. Stanforth ◽  
Jonathan M. Oliver ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document