Untersuchung zur Wirkung von Kinesio-Tape und IQ-Tape auf die neuromuskuläre Aktivität beim Joggen, Treppensteigen und Drop-Jump

2020 ◽  
Vol 34 (02) ◽  
pp. 96-104
Author(s):  
Slavko Rogan ◽  
Heiner Baur

ZusammenfassungHintergrund Applikationen mit elastischem Tape werden positive Wirkungen auf die Bewegung zugeschrieben. Unter anderem werden Attribute wie stoffwechselanregend, entstauend, kräftigend und schmerzlindernd genannt. Das Ziel dieser Interventionsstudie mit einem Within-Subject-Design war die Untersuchung verschiedener elastischer Tapes (Kinesiotape – KT, IQ-Tape – IQ, ohne Tape: OT) auf die neuromuskuläre Aktivierung der Beuge- und Streckkette der unteren Extremität während des Joggens, des Treppensteigens und bei Drop Jumps. Probanden/Methodik Achtzehn gesunde Erwachsene (5 Männer und 13 Frauen) mit einem Durchschnittsalter von 26,3 ± 3,6 Jahren und einem Body-Mass-Index von 22,3 ± 0,7 kg/m2 wurden rekrutiert. Die Teilnehmer absolvierten Laufintervalle mit 10 km/h, 12 km/h und 15 km/h, Treppensteigen und Drop Jumps (10 Versuche). Die Muskelaktivierung des M. vastus medialis und M. vastus lateralis, des M. bizeps femoris, des M. semitendionosus, des M. tibialis anterior, M. gastrocnemius medialis und lateralis wurden erhoben, um das Verhältnis der Muskelaktivierung des M. tibialis anterior zu M. gastrocnemius medialis und lateralis (T/G-ratio) und des M. vastus medialis und lateralis zum M. bizeps femoris und M. semitendinosus (V/I-ratio) zum Zeitpunkt vor (–150 bis 0 ms pre), während (0–30 ms post) und von 30 ms bis 150 ms post der ersten Bodenkontaktaufnahme mit Hilfe elektromyografischer Messungen darzustellen. Die statistische Prüfung erfolgte mittels des nonparametrischen L-Puri-Sen-Verfahrens. Das Signifikanzniveau wurde auf p < 0,05 gesetzt. Ergebnisse Zwei Probanden schieden während der Datenaufnahme aus der Studie aus. Damit konnten von 16 Probanden Daten analysiert werden. Beim Treppenheruntersteigen zeigt IQT in der Voraktivierung (–150 bis 0 ms) vor dem ersten Bodenkontakt einen signifikant erhöhten T/G-ratio im Vergleich zu OT (p = 0,01). Die restlichen Vergleiche von Applikationen mit KT, IQT und OT ergaben keine signifikanten Unterschiede (p > 0,05). Schlussfolgerung Es kann davon ausgegangen werden, dass Kinesiotape – KT und IQ-Tape – IQ keine relevanten detektierbaren Änderungen der Muskelaktivierung bei gesunden Personen hervorrufen. Zukünftige Studien sollten Patienten einschließen, die eine pathologisch veränderte neuromuskuläre Kontrolle aufweisen.

2018 ◽  
Vol 2 (85) ◽  
Author(s):  
Neringa Baranauskienė ◽  
Loreta Stasiulė ◽  
Sandra Raubaitė ◽  
Arvydas Stasiulis

Research  background  and  hypothesis.  Prior  eccentric  or  eccentric-concentric  exercise  induces  long  lasting muscle fatigue and delayed onset muscle soreness (DOMS). Moreover, the surface electromyograme sEMG amplitude increases under fatigue conditions. We suppose that prior eccentric – concentric exercise, inducing DOMS, increases EMG amplitude of thigh muscles during constant cycling exercises.Research aim of the study was to assess the residual effect of 100 prior drop jumps (PDJ) on the sEMG of m. vastus lateralis and m. vastus medialis during moderate and heavy intensity cycling exercises. Research methods. On four different days 10 female students performed one increasing and three (control, 45  min and 24 h after 100 drop jumps) moderate and heavy cycling (Ergoline-800, Germany) exercises. The cadence of cycling was 70 rpm. The sEMG of right thigh m. vastus lateralis and m. vastus medialis were continuously recorded during moderate and heavy cycling exercise. Creatine kinasis activity was measured and DOMS was rated 24 h after PDJ. Research results. After 24 h the subjects felt moderate DOMS (5.0 (2.79)) according to 10 point scale. The sEMG root mean square amplitude of m. vastus lateralis significantly increased 24 h after PDJ during moderate, but unaltered during heavy cycling exercise under fatigue conditions (45 min and 24 h after PDJ).Discussion and conclusion. Prior drop jumps seem to have significant residual (within 24 h of recovery) effect on EMG of thigh muscles during moderate cycling exercise in female students.Keywords: delayed onset muscle soreness, constant load, EMG root mean square.


2011 ◽  
Vol 164 (6) ◽  
pp. 985-993 ◽  
Author(s):  
Marco A Minetto ◽  
Fabio Lanfranco ◽  
Alberto Botter ◽  
Giovanna Motta ◽  
Giulio Mengozzi ◽  
...  

ObjectiveGlucocorticoids are known to decrease protein synthesis and conduction velocity of muscle fibers. However, the degree of impairment of muscle protein synthesis and conduction slowing in patients with Cushing's disease remains poorly characterized. Our objective was to investigate whether and to what extent chronic endogenous hypercortisolism could decrease the circulating levels of muscle proteins and modify myoelectric indexes of sarcolemmal excitability and fatigability.DesignA total of ten patients with Cushing's disease and 30 healthy controls matched for age, sex, and body mass index were compared.MethodsBlood sampling and electrophysiological tests on vastus lateralis, vastus medialis, and tibialis anterior muscles were performed.ResultsSerum creatine kinase (CK) and plasma myoglobin were significantly lower in patients with respect to controls (P<0.001 and P<0.05 respectively): the mean relative difference between patients and controls was 48.9% for CK and 21.4% for myoglobin. Muscle fiber conduction velocity (MFCV) and myoelectric manifestations of fatigue were significantly decreased in all muscles of the patients with respect to controls. The mean relative difference in MFCV between patients and controls was 26.0% for vastus lateralis, 22.9% for vastus medialis, and 11.6% for tibialis anterior. These differences contrasted with the paucity of signs suggestive of myopathy that were obtained by needle electromyography in the patients.ConclusionsSlowing of muscle fiber conduction and decreased levels of circulating muscle proteins are sensitive markers of impaired muscle function, which are suitable for use in combination with clinical assessment and standard electrodiagnostic tests for accurate identification and follow-up of myopathic patients.


2014 ◽  
Vol 41 (1) ◽  
pp. 23-32
Author(s):  
Patrícia Dias Pantoja ◽  
André Mello ◽  
Giane Veiga Liedtke ◽  
Ana Carolina Kanitz ◽  
Eduardo Lusa Cadore ◽  
...  

AbstractThis study aimed to describe the neuromuscular activity of elite athletes who performed various roller figure skating jumps, to determine whether the muscle activation is greater during jumps with more rotations and in which phase the muscles are more active. This study also aimed to analyze if there is any difference in the muscle activity pattern between female and male skaters. Four elite skaters were evaluated, and each participated in two experimental sessions. During the first session, anthropometric data were collected, and the consent forms were signed. For the second session, neuromuscular data were collected during jumps, which were performed with skates at a rink. The following four roller figure skating jumps were evaluated: single Axel, double Axel, double Mapes and triple Mapes. The neuromuscular activity of the following seven muscles was obtained with an electromyograph which was fixed to the waist of each skater with a strap: biceps femoris, lateral gastrocnemius, tibialis anterior, rectus femoris, vastus lateralis, vastus medialis and gluteus maximus. The signal was transmitted wirelessly to a laptop. During the roller figure skating jumps, the lateral gastrocnemius, rectus femoris, vastus lateralis, biceps femoris and gluteus maximus, showed more activation during the jumps with more rotations, and the activation mainly occurred during the propulsion and flight phases. Female skaters demonstrated higher muscle activities in tibialis anterior, vastus lateralis, vastus medialis and gluteus maximus during the landing phase of the triple Mapes, when compared to their male counterparts. The results obtained in this study should be considered when planning training programs with specific exercises that closely resemble the roller figure skating jumps. This may be important for the success of elite skaters in competitions.


2021 ◽  
Vol 80 (1) ◽  
pp. 309-316
Author(s):  
Przemysław Pietraszewski ◽  
Artur Gołaś ◽  
Michał Krzysztofik

Abstract The purpose of this study was to assess whether peak surface electromyography (sEMG) amplitude of selected lower limb muscles differed during a) curve and straight sprinting, b) sprinting in inside and outside lanes between lower limbs. Eleven well-trained female sprinters (personal best: 24.1 ± 1.1 s) were included in a randomized within-subject design study, in which participants underwent two experimental conditions: all-out 200 m indoor sprints in the innermost and outermost lane. Peak sEMG amplitude was recorded bilaterally from gastrocnemius medialis, biceps femoris, gluteus maximus, tibialis anterior, and vastus lateralis muscles. Left gastrocnemius medialis peak sEMG amplitude was significantly higher than for the right leg muscle during curve (p = 0.011) and straight sprinting (p < 0.001) when sprinting in the inside lane, and also significantly higher when sprinting in the inside vs. outside lane for both curve and straight sprinting (p = 0.037 and p = 0.027, respectively). Moreover, left biceps femoris peak sEMG amplitude was significantly higher during straight sprinting in the inside vs. outside lane (p = 0.006). Furthermore, right and left vastus lateralis peak sEMG amplitude was significantly higher during curve sprinting in the inside lane (p = 0.001 and p = 0.004, respectively) and for the left leg muscle peak sEMG amplitude was significantly higher during curve compared to straight sprinting in the outside lane (p = 0.024). Results indicate that curve sprinting creates greater demands mainly for the gastrocnemius medialis of the inner than the outer leg, but the degree of these requirements seems to depend on the radius of the curve, thus significant changes were noted during sprinting in the inside lane, but not in the outside lane.


2015 ◽  
Vol 24 (4) ◽  
pp. 391-397 ◽  
Author(s):  
Shirleeah D. Fayson ◽  
Alan R. Needle ◽  
Thomas W. Kaminski

Context:The use of Kinesio Tape among health care professional has grown recently in efforts to efficiently prevent and treat joint injuries. However, limited evidence exists regarding the efficacy of this technique in enhancing joint stability and neuromuscular control.Objective:To determine how Kinesio Tape application to the ankle joint alters forces and muscle activity during a drop-jump maneuver.Design:Single-group pretest– posttest.Setting:University laboratory.Subjects:22 healthy adults with no previous history of ankle injury.Interventions:Participants were instrumented with electromyography on the lower-leg muscles as they jumped from a 35-cm platform onto force plates. Test trials were performed without tape (BL), immediately after application of Kinesio Tape to the ankle (KT-I), and after 24 h of continued use (KT-24).Main Outcome Measures:Peak ground-reaction forces (GRFs) and time to peak GRF were compared across taping conditions, and the timing and amplitude of muscle activity from the tibialis anterior, peroneus longus, and lateral gastrocnemius were compared across taping conditions.Results:No significant differences in amplitude or timing of GRFs were observed (P > .05). However, muscle activity was observed to decrease from BL to KT-I in the tibialis anterior (P = .027) and from BL to KT-24 in the PL (P = .022).Conclusions:The data suggest that Kinesio Tape decreases muscle activity in the ankle during a drop-jump maneuver, although no changes in GRFs were observed. This is contrary to the proposed mechanisms of Kinesio Tape. Further research might investigate how this affects participants with a history of injury.


2011 ◽  
Vol 25 (1) ◽  
pp. 27-37
Author(s):  
Rodrigo Rico Bini ◽  
Felipe Pivetta Carpes ◽  
Fernando Diefenthaeler

A mudança da posição do corpo sobre a bicicleta tem sido relacionada a alterações na ativação dos músculos do membro inferior. Desta forma, o objetivo do presente estudo foi comparar a ativação dos músculos "Tibialis Anterior", "Gastrocnemius Medialis", "Biceps Femoris", "Rectus Femoris", "Vastus Lateralis", "Adductor Longus" e "Gluteus Maximus" nas seguintes situações: 1) posição de referência (posição preferida); 2) posição de adução (joelhos tangenciando o quadro da bicicleta); 3) posição de abdução (joelhos afastados do quadro da bicicleta). Seis atletas com experiência competitiva em ciclismo foram avaliados por meio da eletromiografia de superfície (EMG). Todos pedalaram em suas próprias bicicletas montadas em um ciclosimulador, com carga de trabalho normalizada pelo VO2 de forma que a taxa de troca respiratória se mantivesse entre 0,8 e 1,0. A ativação muscular foi analisada por meio da comparação da média do envelope RMS e do período de ativação para cada um dos músculos, nas três posições avaliadas. Não foram observadas diferenças significativas para a média do envelope RMS e para o período de ativação dos músculos nas três posições avaliadas, à exceção do "Adductor Longus". Observou-se maior ativação (36 ± 6%) deste músculo na posição de adução comparado a posição de abdução (25 ± 11%) para um valor de significância de p = 0,02, sem diferenças em relação a posição de referência (27 ± 7%). Estes resultados sugerem que não ocorrem alterações substanciais na ativação dos principais músculos do membro inferior quando a posição dos joelhos no plano frontal é alterada e a carga de trabalho é mantida, à exceção do aumento da participação do "Adductor Longus".


2021 ◽  
pp. 1-8
Author(s):  
Farzad Fatehi ◽  
Soroor Advani ◽  
Ali Asghar Okhovat ◽  
Bentolhoda Ziaadini ◽  
Hosein Shamshiri ◽  
...  

Background: Muscle MRI protocols have been developed to assess muscle involvement in a wide variety of muscular dystrophies. Different muscular dystrophies can involve muscle groups in characteristic patterns. These patterns can be identified in muscle MRI in the form of fatty infiltration. Objective: This study was conducted to add the existing knowledge of muscle MRI in GNE myopathy and evaluate the correlation of muscular involvement with different gene mutations. Methods: The MRI scans of the 18 GNE patients were analyzed retrospectively. Cluster analysis was done for grouping the muscles and patients. Results: The four muscles with the highest fat infiltration were adductor magnus, tibialis anterior, semitendinosus, and semimembranosus. Furthermore, three clusters of muscle involvement were found, including cluster 1, typical muscle involvement indicating muscles with the highest infiltration: extensor digitorum longus, gracilis, biceps femoris, soleus, gastrocnemius medial, adductor longus, tibialis anterior, adductor magnus, semimembranosus, semitendinosus; cluster 2, less typical muscle involvement indicating muscles with intermediate fat infiltration, peroneus longus, gastrocnemius lateral, and minimal fat infiltration in most of the patients, i.e., tibialis posterior; and cluster 3, atypical muscle involvement with low-fat infiltration: rectus femoris, sartorius, vastus intermedius, vastus medialis, and vastus lateralis. Conclusions: This study found three clusters of muscle involvement and three groups of patients among GNE patients. Hamstring muscles and the anterior compartment of the lower leg were the muscles with the highest fat infiltration. Moreover, a weak genotype-muscle MRI association was found in which tibialis posterior was more involved in patients with the most frequent mutation, i.e., C.2228T >  C (p.M743T) mutation; however, this finding may be related to longer disease duration.


2014 ◽  
Vol 23 (2) ◽  
pp. 107-122 ◽  
Author(s):  
W. Matthew Silvers ◽  
Eadric Bressel ◽  
D. Clark Dickin ◽  
Garry Killgore ◽  
Dennis G. Dolny

Context:Muscle activation during aquatic treadmill (ATM) running has not been examined, despite similar investigations for other modes of aquatic locomotion and increased interest in ATM running.Objectives:The objectives of this study were to compare normalized (percentage of maximal voluntary contraction; %MVC), absolute duration (aDUR), and total (tACT) lower-extremity muscle activity during land treadmill (TM) and ATM running at the same speeds.Design:Exploratory, quasi-experimental, crossover design.Setting:Athletic training facility.Participants:12 healthy recreational runners (age = 25.8 ± 5 y, height = 178.4 ± 8.2 cm, mass = 71.5 ± 11.5 kg, running experience = 8.2 ± 5.3 y) volunteered for participation.Intervention:All participants performed TM and ATM running at 174.4, 201.2, and 228.0 m/min while surface electromyographic data were collected from the vastus medialis, rectus femoris, gastrocnemius, tibialis anterior, and biceps femoris.Main Outcome Measures:For each muscle, a 2 × 3 repeated-measures ANOVA was used to analyze the main effects and environment–speed interaction (P ≤ .05) of each dependent variable: %MVC, aDUR, and tACT.Results:Compared with TM, ATM elicited significantly reduced %MVC (−44.0%) but increased aDUR (+213.1%) and tACT (+41.9%) in the vastus medialis, increased %MVC (+48.7%) and aDUR (+128.1%) in the rectus femoris during swing phase, reduced %MVC (−26.9%) and tACT (−40.1%) in the gastrocnemius, increased aDUR (+33.1%) and tACT (+35.7%) in the tibialis anterior, and increased aDUR (+41.3%) and tACT (+29.2%) in the biceps femoris. At faster running speeds, there were significant increases in tibialis anterior %MVC (+8.6−15.2%) and tACT (+12.7−17.0%) and rectus femoris %MVC (12.1−26.6%; swing phase).Conclusion:No significant environment–speed interaction effects suggested that observed muscle-activity differences between ATM and TM were due to environmental variation, ie, buoyancy (presumed to decrease %MVC) and drag forces (presumed to increase aDUR and tACT) in the water.


Sign in / Sign up

Export Citation Format

Share Document