Preparation of Functionalized Diorganomagnesium Reagents in Toluene via Bromine or Iodine/Magnesium-Exchange Reactions

Synthesis ◽  
2021 ◽  
Author(s):  
Alexandre Desaintjean ◽  
Fanny Danton ◽  
Paul Knochel

A wide range of polyfunctionalized di(hetero)aryl- and dialkenyl-magnesium reagents were prepared in toluene within 10 to 120 min between −78 °C and 25 °C via an I/Mg- or Br/Mg-exchange reaction using reagents of the general formula R2Mg (R = sBu, Mes). Highly sensitive functional groups, such as a triazene or a nitro group, were tolerated in these exchange reactions, enabling the synthesis of various functionalized (hetero)arenes and alkenes derivatives after quenching with several electrophiles including allyl bromides, acyl chlorides, aldehydes, ketones, and aryl iodides.

Synthesis ◽  
2021 ◽  
Author(s):  
Florian Sanchez ◽  
Alexandre Desaintjean ◽  
Fanny Danton ◽  
Paul Knochel

Regioselective I/Zn-exchange reactions were performed on polyiodinated arenes or heterocycles within 20 min at 0-25 °C using the bimetallic combination pTol2Zn·2LiOR (R = (CH2)2N(Me)(CH2)2NMe2) in toluene. The resulting diaryl- or di(hetero)aryl-zincs reacted well with allylic bromides and acyl chlorides to provide functionalized (hetero)aryl iodides in good yields.


Synthesis ◽  
2020 ◽  
Author(s):  
Niels Weidmann ◽  
Rodolfo H. V. Nishimura ◽  
Paul Knochel ◽  
Johannes H. Harenberg

AbstractA halogen–lithium exchange reaction of (hetero)aromatic halides performed in the presence of various electrophiles such as aldehydes, ketones, Weinreb amides, and imines using BuLi as exchange reagent and a commercially available flow set-up is reported. The organolithiums generated in situ were instantaneously trapped with various electrophiles (Barbier conditions) resulting in the formation of polyfunctional (hetero)arenes. This method enables the functionalization of (hetero)arenes containing highly sensitive functional groups such as esters­, which are not tolerated in batch conditions.


Author(s):  
Daria S. Timofeeva ◽  
David M Lindsay ◽  
W. J. Kerr ◽  
David James Nelson

Herein we examine the relationship between reaction rate and reaction selectivity in iridium-catalysed hydrogen isotope exchange (HIE) reactions directed by Lewis basic functional groups. We have recently develped a directing...


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 279
Author(s):  
Kentaro Noda ◽  
Jian Sun ◽  
Isao Shimoyama

A tensor sensor can be used to measure deformations in an object that are not visible to the naked eye by detecting the stress change inside the object. Such sensors have a wide range of application. For example, a tensor sensor can be used to predict fatigue in building materials by detecting the stress change inside the materials, thereby preventing accidents. In this case, a sensor of small size that can measure all nine components of the tensor is required. In this study, a tensor sensor consisting of highly sensitive piezoresistive beams and a cantilever to measure all of the tensor components was developed using MEMS processes. The designed sensor had dimensions of 2.0 mm by 2.0 mm by 0.3 mm (length by width by thickness). The sensor chip was embedded in a 15 mm3 cubic polydimethylsiloxane (PDMS) (polydimethylsiloxane) elastic body and then calibrated to verify the sensor response to the stress tensor. We demonstrated that 6-axis normal and shear Cauchy stresses with 5 kPa in magnitudes can be measured by using the fabricated sensor.


2008 ◽  
Vol 07 (03) ◽  
pp. 435-446 ◽  
Author(s):  
PING LI ◽  
XIAOYAN XIE ◽  
YUXIANG BU ◽  
WEIHUA WANG ◽  
NANA WANG ◽  
...  

The coupling interactions and self-exchange reaction mechanisms between NO and ONH (NOH) have been systematically investigated at the B3LYP/6-311++G** level of theory. All the equilibrium complexes are characterized by the intermolecular H-bonds and co-planar geometries. The cisoid NOH/ON species is the most stable one among all the complexes considered due to the formation of an N – N bond. Moreover, all the cisoid complexes are found to be more stable than the corresponding transoid ones. The origin of the blueshifts occurring in the selected complexes has been explored, employing the natural bond orbital (NBO) calculations. Additionally, the proton transfer mechanisms for the self-exchange reactions have been proposed, i.e. they can proceed via the three-center proton-coupled electron transfer or five-center cyclic proton-coupled electron transfer mechanism.


2003 ◽  
pp. 396-397 ◽  
Author(s):  
Greta Varchi ◽  
Christiane Kofink ◽  
David M. Lindsay ◽  
Alfredo Ricci ◽  
Paul Knochel

2018 ◽  
Vol 64 (4) ◽  
pp. 656-679 ◽  
Author(s):  
Jeffrey D Freeman ◽  
Lori M Rosman ◽  
Jeremy D Ratcliff ◽  
Paul T Strickland ◽  
David R Graham ◽  
...  

Abstract BACKGROUND Advancements in the quality and availability of highly sensitive analytical instrumentation and methodologies have led to increased interest in the use of microsamples. Among microsamples, dried blood spots (DBS) are the most well-known. Although there have been a variety of review papers published on DBS, there has been no attempt at describing the full range of analytes measurable in DBS, or any systematic approach published for characterizing the strengths and weaknesses associated with adoption of DBS analyses. CONTENT A scoping review of reviews methodology was used for characterizing the state of the science in DBS. We identified 2018 analytes measured in DBS and found every common analytic method applied to traditional liquid samples had been applied to DBS samples. Analytes covered a broad range of biomarkers that included genes, transcripts, proteins, and metabolites. Strengths of DBS enable its application in most clinical and laboratory settings, and the removal of phlebotomy and the need for refrigeration have expanded biosampling to hard-to-reach and vulnerable populations. Weaknesses may limit adoption in the near term because DBS is a nontraditional sample often requiring conversion of measurements to plasma or serum values. Opportunities presented by novel methodologies may obviate many of the current limitations, but threats around the ethical use of residual samples must be considered by potential adopters. SUMMARY DBS provide a wide range of potential applications that extend beyond the reach of traditional samples. Current limitations are serious but not intractable. Technological advancements will likely continue to minimize constraints around DBS adoption.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Tope O. Bolanle-Ojo ◽  
Abiodun D. Joshua ◽  
Opeyemi A. Agbo-Adediran ◽  
Ademola S. Ogundana ◽  
Kayode A. Aiyeyika ◽  
...  

Conducting binary-exchange experiments is a common way to identify cationic preferences of exchangeable phases in soil. Cation exchange reactions and thermodynamic studies of Pb2+/Ca2+, Cd2+/Ca2+, and Zn2+/Ca2+were carried out on three surface (0–30 cm) soil samples from Adamawa and Niger States in Nigeria using the batch method. The physicochemical properties studies of the soils showed that the soils have neutral pH values, low organic matter contents, low exchangeable bases, and low effective cation exchange capacity (mean: 3.27 cmolc kg−1) but relatively high base saturations (≫50%) with an average of 75.9%. The amount of cations sorbed in all cases did not exceed the soils cation exchange capacity (CEC) values, except for Pb sorption in the entisol-AD2 and alfisol-AD3, where the CEC were exceeded at high Pb loading. Calculated selectivity coefficients were greater than unity across a wide range of exchanger phase composition, indicating a preference for these cations over Ca2+. TheKeqvalues obtained in this work were all positive, indicating that the exchange reactions were favoured and equally feasible. These values indicated that the Ca/soil systems were readily converted to the cation/soil system. The thermodynamic parameters calculated for the exchange of these cations were generally low, but values suggest spontaneous reactions.


Synlett ◽  
2017 ◽  
Vol 28 (18) ◽  
pp. 2425-2428 ◽  
Author(s):  
Bill Morandi ◽  
Yong Lee

We report that a Lewis acidic silane, Me2SiHCl, can mediate the direct cross-coupling of a wide range of carbonyl compounds with alcohols to form dialkyl ethers. The reaction is operationally simple, tolerates a range of polar functional groups, can be utilized to make sterically hindered ethers, and is extendable to sulfur and nitrogen nucleo­philes.


Sign in / Sign up

Export Citation Format

Share Document