Characterization of immunostimulatory activities of fractions obtained from Taraxacum officinale

Planta Medica ◽  
2010 ◽  
Vol 76 (12) ◽  
Author(s):  
J Kim ◽  
G Choi ◽  
H Hwang ◽  
H Ku ◽  
C Choi ◽  
...  
Keyword(s):  
2019 ◽  
Vol 60 (7) ◽  
pp. 1595-1603 ◽  
Author(s):  
Jung Yeon Han ◽  
Hye-Jeong Jo ◽  
Eun Kyung Kwon ◽  
Yong Eui Choi

Abstract Triterpenes, consisting of six isoprene units, are one of the largest classes of natural compounds in plants. The genus Taraxacum is in the family Asteraceae and is widely distributed in the Northern Hemisphere. Various triterpenes, especially taraxerol and taraxasterol, are present in Taraxacum plants. Triterpene biosynthesis occurs through the action of oxidosqualene cyclase (OSC), which generates various types of triterpenes from 2,3-oxidosqualene after the rearrangement of the triterpene skeleton. However, no functional characterization of the OSC genes involved in triterpene biosynthesis, except for a lupeol synthase in Taraxacum officinale, has been performed. Taraxacum coreanum, or Korean dandelion, grows in Korea and China. Putative OSC genes in T. coreanum plants were isolated by transcriptome analysis, and four of these (TcOSC1, TcOSC2, TcOSC3 and TcOSC4) were functionally characterized by heterologous expression in yeast. Both TcOSC1 and TcOSC2 were closely related to dammarenediol-II synthases. TcOSC3 and TcOSC4 were strongly grouped with β-amyrin synthases. Functional analysis revealed that TcOSC1 produced several triterpenes, including taraxasterol; Ψ-taraxasterol; α-, β- and δ-amyrin; and dammarenediol-II. TcOSC2 catalyzed the production of bauerenol and another unknown triterpene, TcOSC3 catalyzed the production of β-amyrin. TcOSC4 catalyzed the production of taraxerol. Moreover, we identified taraxasterol, ψ-taraxasterol, taraxerol, lupeol, δ-amyrin, α-amyrin, β-amyrin and bauerenol in the roots and leaves of T. coreanum. Our results suggest that TcOSC1, TcOSC2, TcOSC3 and TcOSC4 are key triterpene biosynthetic enzymes in T. coreanum. These enzymes are novel triterpene synthases involved in the production of taraxasterol, bauerenol and taraxerol.


2020 ◽  
Vol 56 (7) ◽  
pp. 2065-2077 ◽  
Author(s):  
Haytem Moussaoui ◽  
Mounir Kouhila ◽  
Hamza Lamsyehe ◽  
Ali Idlimam ◽  
Abdelkader Lamharrar

1985 ◽  
Vol 91 (2) ◽  
pp. 77-92 ◽  
Author(s):  
Jeanne Dijkstra ◽  
Yvonne Clement ◽  
H. Lohuis
Keyword(s):  

2018 ◽  
Vol 73 (1-2) ◽  
pp. 41-47 ◽  
Author(s):  
Ivan Ivanov ◽  
Nadezhda Petkova ◽  
Julian Tumbarski ◽  
Ivayla Dincheva ◽  
Ilian Badjakov ◽  
...  

AbstractA comparative investigation of n-hexane soluble compounds from aerial parts of dandelion (Taraxacum officinaleWeber ex F.H. Wigg.) collected during different vegetative stages was carried out. The GC-MS analysis of the n-hexane (unpolar) fraction showed the presence of 30 biologically active compounds. Phytol [14.7% of total ion current (TIC)], lupeol (14.5% of TIC), taraxasteryl acetate (11.4% of TIC), β-sitosterol (10.3% of TIC), α-amyrin (9.0% of TIC), β-amyrin (8.3% of TIC), and cycloartenol acetate (5.8% of TIC) were identified as the major components in n-hexane fraction. The unpolar fraction exhibited promising antioxidant activity – 46.7 mmol Trolox equivalents/g extract (determined by 1,1-diphenyl-2-picrylhydrazyl method). This fraction demonstrated insignificant antimicrobial activity and can be used in cosmetic and pharmaceutical industries.


1998 ◽  
Vol 97 (1-2) ◽  
pp. 283-292 ◽  
Author(s):  
M. Falque ◽  
J. Keurentjes ◽  
J. M. T. Bakx-Schotman ◽  
P. J. van Dijk

Author(s):  
B. L. Soloff ◽  
T. A. Rado

Mycobacteriophage R1 was originally isolated from a lysogenic culture of M. butyricum. The virus was propagated on a leucine-requiring derivative of M. smegmatis, 607 leu−, isolated by nitrosoguanidine mutagenesis of typestrain ATCC 607. Growth was accomplished in a minimal medium containing glycerol and glucose as carbon source and enriched by the addition of 80 μg/ ml L-leucine. Bacteria in early logarithmic growth phase were infected with virus at a multiplicity of 5, and incubated with aeration for 8 hours. The partially lysed suspension was diluted 1:10 in growth medium and incubated for a further 8 hours. This permitted stationary phase cells to re-enter logarithmic growth and resulted in complete lysis of the culture.


Author(s):  
A.R. Pelton ◽  
A.F. Marshall ◽  
Y.S. Lee

Amorphous materials are of current interest due to their desirable mechanical, electrical and magnetic properties. Furthermore, crystallizing amorphous alloys provides an avenue for discerning sequential and competitive phases thus allowing access to otherwise inaccessible crystalline structures. Previous studies have shown the benefits of using AEM to determine crystal structures and compositions of partially crystallized alloys. The present paper will discuss the AEM characterization of crystallized Cu-Ti and Ni-Ti amorphous films.Cu60Ti40: The amorphous alloy Cu60Ti40, when continuously heated, forms a simple intermediate, macrocrystalline phase which then transforms to the ordered, equilibrium Cu3Ti2 phase. However, contrary to what one would expect from kinetic considerations, isothermal annealing below the isochronal crystallization temperature results in direct nucleation and growth of Cu3Ti2 from the amorphous matrix.


Sign in / Sign up

Export Citation Format

Share Document