Preparation of ciprofloxacin-coated zinc oxide nanoparticles and their antibacterial effects against clinical isolates of Staphylococcus aureus and Escherichia coli

2011 ◽  
Vol 61 (08) ◽  
pp. 472-476 ◽  
Author(s):  
Seif Sepideh ◽  
Kazempour Zahra Bahri ◽  
Pourmand Mohammad Reza ◽  
Shahverdi Hamid Reza ◽  
Amanlou Massoud ◽  
...  
2017 ◽  
Vol 11 (1) ◽  
pp. 34-40
Author(s):  
Israa Ali Zaidan Al-Ogaidi

In the current study, synthesis and characterization of Zinc oxide nanoparticles (ZnONPs) and its application as anti-pathogenic bacteria were investigated.  ZnO which has been prepared by using aqueous of green tea leaves extract (Camellia sinensis) as a reducing agent. The wavelength range was measured by Ultraviolet–visible spectroscopy (UV-Vis) for monitoring the formation of the nanoparticles, which showed sharp peak at 360 nm. The average size and shape of the nanoparticles were detected by using Atomic Force Microscopy (AFM) which was 88 nm with spherical shape. Fourier transform–infrared (FTIR). FT-IR spectra was documented for the ZnO nanoparticles synthesized by green tea extract to detect the biomolecules involved in the synthesis process. The antibacterial activity of crystal Zinc Oxide (ZnO) nanoparticles was explored against pathogenic bacteria that included Escherichia coli, Staphylococcus aureus, and Acinetobacter baumannii. The antibacterial test was conducted in solid media using different concentrations of ZnO and disk diffusion method, 100 µg/ml presented the best antibacterial activity, and further studies on the damage of bacterial genomic DNA of Escherichia coli and Acinetobacter baumannii were carried out using gel electrophoresis exposed the DNA fragment bands, this activity may be caused by the interactions between the surface charge of cell and nanoparticles. Reactive oxygen species (ROS) properties of the particles might disturb cell wall and great antimicrobial action


2020 ◽  
Vol 26 (6) ◽  
pp. 200454-0
Author(s):  
Sabaoon Shamshad ◽  
Jamshaid Rashid ◽  
Ihsan-ul-haq ◽  
Naseem Iqbal ◽  
Saif Ullah Awan

Multidrug resistance of bacteria is an emerging human health hazard and warrants development of novel antibacterial agents with more effective mode of action. Here, zinc oxide and silver nanomaterials were prepared using Ficus palmata Forssk leaf extract with efficient antibacterial activity. SEM coupled with EDS confirmed the spherical symmetry with average particle diameter 50 to 65 nm while the XRD confirmed crystalline face centered cubic structure of silver and hexagonal crystallize phase of zinc oxide nanoparticles. Antibacterial activity was evaluated for 8 pathogenic bacterial strains including 3 drug resistant pathogenic strains. The nanoparticles showed enhanced growth inhibition for resistant strains in comparison with the broad-spectrum antibiotics i.e. roxithromycin and cefixime. Minimum inhibitory concentration in μg.mL<sup>-1</sup> of silver nanoparticles was found to be as low as 33.3 for resistant Streptococcus haemolyticus; 11.1 for Staphylococcus aureus and E Coli; and 3.7 μg.mL<sup>-1</sup> for resistant Pseudomonas aeruginosa. Similarly, the minimum inhibitory concentration of zinc oxide nanoparticles was found to be 100 μg.mL<sup>-1</sup> against resistant Streptococcus haemolyticus and Staphylococcus aureus; 11.1 μg.mL<sup>-1</sup> for resistant Pseudomonas aeruginosa; and 3.7 μg.mL<sup>-1</sup> against resistant E coli. Ficus palmata Forssk leaf extracts can be explored effectively for synthesizing active antibacterial nanomaterials as a non-toxic and environmentally benign synthesis route.


Author(s):  
Udayashankar Arakere Chunchegowda ◽  
Ashwini Bagepalli Shivaram ◽  
Murali Mahadevamurthy ◽  
Lakshmeesha Thimappa Ramachndrappa ◽  
Sreelatha Gopalakrishna Lalitha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document