scholarly journals Neurological Complications of Multisegmental Spine Reconstruction in Children: Post-Op Spinal Cord Electrical Stimulation (SCES) and Training Decrease Motor Deficit

2016 ◽  
Vol 6 (1_suppl) ◽  
pp. s-0036-1582657-s-0036-1582657
Author(s):  
Elena Shapkova ◽  
Dmitry Emeljannikov ◽  
Ekaterina Shtyrina ◽  
Alexander Mushkin
2001 ◽  
Vol 95 (2) ◽  
pp. 161-168 ◽  
Author(s):  
Blair Calancie ◽  
William Harris ◽  
G. Fred Brindle ◽  
Barth A. Green ◽  
Howard J. Landy

Object. The authors conducted a study to evaluate repetitive transcranial electrical stimulation (TES) to assess spinal cord motor tract function in individuals undergoing spine surgery, with emphasis on safety and efficacy. Methods. Somatosensory evoked potentials (SSEPs) were elicited using standard technique. Muscle electromyographic values were measured in response to a three- or four-pulse train of stimulation delivered to the motor cortex via subdermal electrodes. They also evaluated whether changes in the minimum stimulus intensity (that is, threshold level) needed to elicit a response from a given muscle predict motor status immediately postoperatively, as well as whether changes in SSEP response amplitude and latency predict sensory status immediately postoperatively. Anesthesia was routinely induced with intravenous propofol and remifentanil, supplemented with inhaled nitrous oxide. Use of neuromuscular block was avoided after intubation. Satisfactory monitoring of muscle response to threshold-level repetitive TES was achieved in all but nine of the 194 patients studied. In contrast, cortical SSEP responses could not be elicited in 42 of 194 individuals. In cases in which responses were present, TES-based evoked responses proved to be extremely accurate for predicting postoperative motor status. Somatosensory evoked potential monitoring was nearly as accurate for predicting postoperative sensory status. There were frequent instances of postoperative motor or sensory deficit that were not predicted by SSEP- and TES-based monitoring, respectively. There were no adverse events attributable to TES-based monitoring, although since this study ended we have had a single adverse event attributable to threshold-level repetitive TES. Conclusions. Intraoperative threshold-level repetitive TES—based monitoring of central motor conduction has proven to be a simple, safe, and highly accurate technique for the prevention or minimization of inadvertent motor deficit during surgery involving the spine or spinal cord.


1997 ◽  
Vol 36 (04/05) ◽  
pp. 372-375 ◽  
Author(s):  
J. R. Sutton ◽  
A. J. Thomas ◽  
G. M. Davis

Abstract:Electrical stimulation-induced leg muscle contractions provide a useful model for examining the role of leg muscle neural afferents during low-intensity exercise in persons with spinal cord-injury and their able-bodied cohorts. Eight persons with paraplegia (SCI) and 8 non-disabled subjects (CONTROL) performed passive knee flexion/extension (PAS), electrical stimulation-induced knee flexion/extension (ES) and voluntary knee flexion/extension (VOL) on an isokinetic dynamometer. In CONTROLS, exercise heart rate was significantly increased during ES (94 ± 6 bpm) and VOL (85 ± 4 bpm) over PAS (69 ± 4 bpm), but no changes were observed in SCI individuals. Stroke volume was significantly augmented in SCI during ES (59 ± 5 ml) compared to PAS (46 ± 4 ml). The results of this study suggest that, in able-bodied humans, Group III and IV leg muscle afferents contribute to increased cardiac output during exercise primarily via augmented heart rate. In contrast, SCI achieve raised cardiac output during ES leg exercise via increased venous return in the absence of any change in heart rate.


2020 ◽  
Vol 73 (4) ◽  
pp. 160-166
Author(s):  
Csaba Dzsinich ◽  
Péter Gloviczki ◽  
Gabriella Nagy ◽  
Klaudia Vivien Nagy

Összefoglaló. A thoracoabdominalis aortakirekesztés okozta gerincvelő ischemia súlyos neurológiai következményeit számos klinikai és kísérleti tanulmány bizonyítja. E nehezen kiszámítható, súlyos szövődmény megelőzésének érdekében régi törekvés megfelelő intra- és posztoperatív monitorizálás kifejlesztése, ami előre jelzi a gerincvelő-funkció romlását, illetve a kialakuló celluláris károsodást. A legelterjedtebb, a klinikai gyakorlatban széles körben alkalmazott megoldás a gerincvelői kiváltott motoros potenciál (MEP) folyamatos ellenőrzése. Ritkábban alkalmazott – bár ígéretes – eljárás a biokémiai változások nyomon követése, ami a sejtszintű károsodás markereit használja fel az ischemia okozta változások felismerésére. Korábbi dolgozatunkban kutyákon végzett kísérleteink azon eredményeit ismertettük, amelyekben a 60 perces thoracoabdominalis aortakirekesztés okozta neurológiai változások és a perfúzió adatainak összefüggéseit tárgyaltuk. Jelen tanulmányunkban a gerincvelői motoros (MEP) és szenzoros (SEP) kiváltott potenciálok változásait vizsgáljuk a neurológiai végállapot vonatkozásában. Megállapítottuk, hogy SEP változásai a neurológiai károsodás mértékével értékelhető összefüggést nem mutatnak. A MEP-amplitúdó és -latencia értékei biztonsággal jelzik a fenyegető gerincvelő ischemiát. A neurológiai deficit mélységét (Tarlov 2,1,0) a MEP-értékek változásai numerikusan nem értékelhetően követik. Summary. Severe neurological complications of the thoracoabdominal aortic clamping were published in numerous clinical and experimental studies. These hardly predictable, devastating consequences demanded to develop a monitoring system which might detect impending level of spinal cord ischemia in time – in order to introduce or enhance protective procedures and prevent permanent neurological deficit. The most widely used monitoring in clinical practice is the continuous surveillance of the motor evoked potentials (MEP) during and after thoracoabdominal aortic clamping. Much less used, but promising opportunity is to control the metabolic changes and cellular integrity utilizing specific markers like liquor lactate and neuron specific enolase (NSE) etc. In our earlier study we published data of our canine experiment related to coherencies between neurological outcome and specific perfusion of the spinal cord during and after one hour thoracoabdominal aortic clamping. In the present paper we investigate the behavior of motor evoked (MEP) and sensory evoked (SEP) potentials related to neurological changes. We conclude the behavior of SEP values hardly correlate with the neurologic outcome, meanwhile decrease of MEP amplitude provides reliable signal for developing spinal cord ischemia. We could not confirm a numeric correlation of these data and the level of the final neurologic outcome.


2012 ◽  
Vol 10 (4) ◽  
pp. 508-511 ◽  
Author(s):  
Leonardo Giacomini ◽  
Roger Neves Mathias ◽  
Andrei Fernandes Joaquim ◽  
Mateus Dal Fabbro ◽  
Enrico Ghizoni ◽  
...  

Paraplegia is a well-defined state of complete motor deficit in lower limbs, regardless of sensory involvement. The cause of paraplegia usually guides treatment, however, some controversies remain about the time and benefits for spinal cord decompression in nontraumatic paraplegic patients, especially after 48 hours of the onset of paraplegia. The objective of this study was to evaluate the benefits of spinal cord decompression in such patients. We describe three patients with paraplegia secondary to non-traumatic spinal cord compression without sensory deficits, and who were surgically treated after more than 48 hours of the onset of symptoms. All patients, even those with paraplegia during more than 48 hours, had benefits from spinal cord decompression like recovery of gait ability. The duration of paraplegia, which influences prognosis, is not a contra-indication for surgery. The preservation of sensitivity in this group of patients should be considered as a positive prognostic factor when surgery is taken into account.


2021 ◽  
Author(s):  
Manon Duraffourg ◽  
Andrei Brinzeu ◽  
Marc Sindou

Abstract More than three-quarters of victims of brachial plexus injury suffer from refractory neuropathic pain.1-6 Main putative mechanism is paroxysmal hyperactivity in the dorsal horn neurons at the dorsal root entry zone (DREZ) as demonstrated by microelectrode recordings in animal models7 and patients.8 Pain relief can be achieved by lesioning the responsible neurons in the spinal cord segments with avulsed rootlets.9,10  This video illustrates the technique for microsurgical DREZotomy.11,12 A C3-C7 hemilaminectomy is performed to access the C4-Th1 medullary segments. After opening the dura and arachnoid, and freeing the cord from arachnoid adhesions, the dorsolateral sulcus is identified. Identification can be difficult when the spinal cord is distorted and/or has a loss of substance. The dorsolateral sulcus is then opened with a microknife, so that microcoagulations are performed: 4 mm deep, at 35° angle in the axis of the dorsal horn, every millimeter in a dotted fashion along the avulsed segments. Care should be taken not to damage the corticospinal tract, laterally, and the dorsal column, medially.  The patient consents to the procedure. In the presented case, surgery led to complete disappearance of the paroxysmal pain and reduced the background of burning pain to a bearable level without the need of opioid medication. There was no motor deficit or ataxia in the ipsilateral lower limb postoperatively. According to Kaplan-Meier analysis at 10 yr follow-up, in our overall series, microsurgical DREZotomy achieved total pain relief without any medication in 60% of patients, and in 85% without the need for opioids.10,13-15  Microelectrode recording at 1:26 reproduced from Guenot et al7 with permission from JNSPG.


Sign in / Sign up

Export Citation Format

Share Document