Antibodies to β2-Glycoprotein I Associated with Antiphospholipid Syndrome Suppress the Inhibitory Activity of Tissue Factor Pathway Inhibitor

2000 ◽  
Vol 84 (10) ◽  
pp. 653-656 ◽  
Author(s):  
Irene Salemink ◽  
Ron Blezer ◽  
George Willems ◽  
Monica Galli ◽  
Edouard Bevers ◽  
...  

SummaryAnionic phospholipid membranes have a dual role in blood coagulation: they are essential for the initiation and propagation as well as for the limitation and termination of the blood coagulation process. Patients with the anti-phospholipid syndrome (APS) carrying antibodies against complexes of anionic phospholipids and plasma proteins, show in vitro inhibited phospholipid dependent coagulation reactions, whereas in vivo the presence of these antibodies is associated with an increased risk of thrombosis. In this study we focussed on the effects of these anti-phospholipid antibodies on the regulation of TF-mediated factor Xa (FXa) generation in plasma. We hypothesized that anti-phospholipid antibodies interfere with the phospholipiddependent inhibition by tissue factor pathway inhibitor (TFPI) of TFinduced coagulation. Indeed, total-IgG, anti-cardiolipin-IgG (aCL) and anti-β2GPI-IgG, isolated from patient plasmas, all stimulated TF-induced FXa generation in normal plasma. This enhanced FXa generation was not observed when the patient’s IgG was depleted of anti-β2GPI-IgG or when normal plasma was depleted of β2GPI or TFPI. Taken together, these data indicate that antibodies to β2GPI, circulating in patients with APS, suppress TFPI-dependent inhibition of TF-induced coagulation, which results in an increased FXa generation.

1997 ◽  
Vol 78 (02) ◽  
pp. 864-870 ◽  
Author(s):  
Hideki Nagase ◽  
Kei-ichi Enjyoji ◽  
Yu-ichi Kamikubo ◽  
Keiko T Kitazato ◽  
Kenji Kitazato ◽  
...  

SummaryDepolymerized holothurian glycosaminoglycan (DHG) is a glycosaminoglycan extracted from the sea cucumber Stichopus japonicusSelenka. In previous studies, we demonstrated that DHG has antithrombotic and anticoagulant activities that are distinguishable from those of heparin and dermatan sulfate. In the present study, we examined the effect of DHG on the tissue factor pathway inhibitor (TFPI), which inhibits the initial reaction of the tissue factor (TF)-mediated coagulation pathway. We first examined the effect of DHG on factor Xa inhibition by TFPI and the inhibition of TF-factor Vila by TFPI-factor Xa in in vitro experiments using human purified proteins. DHG increased the rate of factor Xa inhibition by TFPI, which was abolished either with a synthetic C-terminal peptide or with a synthetic K3 domain peptide of TFPI. In contrast, DHG reduced the rate of TF-factor Vila inhibition by TFPI-factor Xa. Therefore, the effect of DHG on in vitroactivity of TFPI appears to be contradictory. We then examined the effect of DHG on TFPI in cynomolgus monkeys and compared it with that of unfractionated heparin. DHG induced an increase in the circulating level of free-form TFPI in plasma about 20-fold when administered i.v. at 1 mg/kg. The prothrombin time (PT) in monkey plasma after DHG administration was longer than that estimated from the plasma concentrations of DHG. Therefore, free-form TFPI released by DHG seems to play an additive role in the anticoagulant mechanisms of DHG through the extrinsic pathway in vivo. From the results shown in the present work and in previous studies, we conclude that DHG shows anticoagulant activity at various stages of coagulation reactions, i.e., by inhibiting the initial reaction of the extrinsic pathway, by inhibiting the intrinsic Xase, and by inhibiting thrombin.


1999 ◽  
Vol 82 (12) ◽  
pp. 1652-1658 ◽  
Author(s):  
Egbert Kruithof ◽  
Vijay Kakkar ◽  
Florea Lupu ◽  
Cristina Lupu

SummaryTissue factor pathway inhibitor (TFPI), the major downregulator of the procoagulant activity of tissue factor (TF), is synthesised by endothelial cells (EC) and acutely released in vitro after thrombin stimulation. Expression of TF on EC and subsequent thrombin generation occurs in vivo during sepsis or malignancy, inducing disseminated intravascular coagulation (DIC). The present study investigates the changes in plasma TFPI in relation to markers of in vivo thrombin generation induced by injection of factor Xa (FXa)/phospholipids in baboons at dosages leading to partial (48%) or complete fibrinogen depletion. The plasma concentrations of thrombin-antithrombin III (TAT) and fibrinopeptide A (FpA), as markers of in vivo generation of thrombin, were strongly enhanced after injection of FXa/phospholipids. TFPI levels, whether measured as antigen or activity, increased significantly in both treatment groups within few minutes, and were dependent on the dose of FXa/phospholipids. Significant positive correlations between plasma levels of TFPI and of TAT or FpA were observed. Altogether, our results indicate that experimentally induced in vivo generation of thrombin causes the acute release of TFPI, high-lighting a possible novel function of thrombin in downregulation of the coagulation process, potentially relevant for the outcome of DIC.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3177-3177
Author(s):  
Kenichi Ogiwara ◽  
Keiji Nogami ◽  
Masahiro Okuda ◽  
Katsumi Nishiya ◽  
Masahiro Takeyama ◽  
...  

Abstract Abstract 3177 Poster Board III-116 Activated factor (F)VII complex with tissue factor (FVIIa/TF) initiates the blood coagulation by generating FXa as extrinsic Xase complex (ex-Xase). Although FVIIa/TF also activates FIX, FIXa little functions without its cofactor, FVIIIa. A tiny amount of thrombin generated by FXa activates FV and FVIII, followed by forming of intrinsic Xase complex (in-Xase) and prothrombinase complex, respectively. These formations result in ‘thrombin burst’ and successful hemostasis. Although thrombin is thought to be a unique potent activator of FVIII in vivo, FXa and FVIIa/TF also activate FVIII in vitro. We have recently reported the detailed mechanism by which FVIIa/TF activated FVIII more rapidly in early timed-phase than thrombin (Blood Abst.1036, 2008). In this study, we further developed to examine whether TF affected FVIII(a) function. (1) FVIIa/TF rapidly increased FVIII activity by 4.7-fold of initial in the presence of Ca2+ and phospholipid (PL), following by inactivation, in one-stage clotting assay. However, since even in the presence of TF alone, FVIII activity elevated by 1.8-fold of initial, actual increase of FVIII activity by FVIIa/TF was 2.6-fold. A possibility that TF might bind to FVIIa contained in FVIII-deficient plasmas used, was negligible, since FVIIa-inhibitor used blocked an ex-Xase effect >95%. In the presence of FVIIa-inhibitor, residue FVIII activity with TF was ∼50%, thus TF alone affected FVIII cofactor activity independently of FVIIa. (2) Using SDS-PAGE, the addition of TF accelerated FVIII cleavage by FVIIa, whilst decelerated that by thrombin and FXa. (3) Surface plasmon resonance-based assays showed that FVIII(a) directly bound to TF with high affinity (Kd; ∼3 nM). (4) The effect of FVIIa/TF on in-Xase was evaluated in FXa generation assay. 0.1 nM FVIIa/TF, 1 nM FVIII, 90 nM FIX and 20 μM PL were reacted with 150 nM FX at various combinations. FVIIa/TF and FVIIa/TF/FVIII/FIX generated FXa with 3.9 and 10.4 nM/min, respectively. When FVIIa-inhibitor was added prior to addition of FX, FXa generated by FVIIa/TF and FVIIa/TF/FVIII/FIX were 5% and 46% (0.2 and 4.8 nM/min) of those without FVIIa-inhibitor, respectively. The latter was considered as FXa generated by in-Xase. Therefore, FXa derived from in-Xase was ∼40% of total FXa in this condition. (5) FVIIIa/FIXa (1 nM/2 nM)-dependent FXa generation in the presence of TF was evaluated. FXa generation in the presence of TF (0.02 and 0.3 nM) increased by ∼2 and ∼6-folds, respectively, of that in its absence. Furthermore, the functional affinity of FVIIIa for in-Xase complex in the presence of TF (0.1 nM), showed an ∼1.5-fold greater than that in its absence (Km; 4.9 ± 0.4 and 7.1 ± 0.9 nM, respectively). In conclusion, FVIIa/TF can generate FVIIIa in early timed-phase in vitro as well as FXa and FIXa, and possess potential of forming in-Xase. In addition, TF directly binds to FVIII(a), and functions in-Xase complex more efficiently by enhancing the affinity of FVIIIa for in-Xase. Although TF-dependent these reactions may be terminated rapidly via anticoagulant systems such as tissue factor pathway inhibitor, our data suggest that interactions of FVIII with TF might contribute to the acceleration of FXa generation in the initiation phase of blood coagulation. Disclosures Okuda: Sysmex Corporation: Employment.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 663
Author(s):  
Marek Z. Wojtukiewicz ◽  
Marta Mysliwiec ◽  
Elwira Matuszewska ◽  
Stanislaw Sulkowski ◽  
Lech Zimnoch ◽  
...  

Neoplastic processes are integrally related to disturbances in the mechanisms regulating hemostatic processes. Brain tumors, including gliomas, are neoplasms associated with a significantly increased risk of thromboembolic complications, affecting 20–30% of patients. As gliomas proliferate, they cause damage to the brain tissue and vascular structures, which leads to the release of procoagulant factors into the systemic circulation, and hence systemic activation of the blood coagulation system. Hypercoagulability in cancer patients may be, at least in part, a result of the inadequate activity of coagulation inhibitors. The aim of the study was to evaluate the expression of the inhibitors of the coagulation and fibrinolysis systems (tissue factor pathway inhibitor, TFPI; tissue factor pathway inhibitor-2 TFPI-2; protein C, PC; protein S, PS, thrombomodulin, TM; plasminogen activators inhibitor, PAI-1) in gliomas of varying degrees of malignancy. Immunohistochemical studies were performed on 40 gliomas, namely on 13 lower-grade (G2) gliomas (8 astrocytomas, 5 oligodendrogliomas) and 27 high-grade gliomas (G3–12 anaplastic astrocytomas, 4 anaplastic oligodendrogliomas; G4–11 glioblastomas). A strong expression of TFPI-2, PS, TM, PAI-1 was observed in lower-grade gliomas, while an intensive color immunohistochemical (IHC) reaction for the presence of TFPI antigens was detected in higher-grade gliomas. The presence of PC antigens was found in all gliomas. Prothrombin fragment 1+2 was observed in lower- and higher-grade gliomas reflecting local activation of blood coagulation. Differences in the expression of coagulation/fibrinolysis inhibitors in the tissues of gliomas with varying degrees of malignancy may be indicative of their altered role in gliomas, going beyond that of their functions in the hemostatic system.


Blood ◽  
2000 ◽  
Vol 95 (6) ◽  
pp. 1973-1978 ◽  
Author(s):  
Guyu Ho ◽  
Masaaki Narita ◽  
George J. Broze ◽  
Alan L. Schwartz

Abstract Tissue factor pathway inhibitor (TFPI) plays a key role in the regulation of tissue factor-initiated blood coagulation secondary to loss of the integrity of the blood vessel wall. TFPI is a naturally occurring Kunitz-type protease inhibitor that inhibits coagulation factor Xa and, in a factor Xa-dependent manner, mediates feedback inhibition of the factor VIIa/tissuefactor catalytic complex. In vivo full-length TFPI is thought to be primarily bound to the vascular endothelium and the high affinity binding requires an intact carboxy terminus. Here we describe a full-length TFPI molecule, expressed in mouse C127 cells (TFPIC127), which exhibits virtually no cellular binding yet contains the intact carboxy terminus. This TFPI (TFPIC127) is neither internalized nor degraded via the TFPI endocytic receptor, LDL-receptor–related protein. Pharmacokinetic studies of TFPIC127 in vivo demonstrate a 10-fold prolongation in the plasma half-life, compared with that of bacterial recombinant TFPI.


Blood ◽  
2004 ◽  
Vol 103 (5) ◽  
pp. 1653-1661 ◽  
Author(s):  
Christoph W. Kopp ◽  
Thomas Hölzenbein ◽  
Sabine Steiner ◽  
Rodrig Marculescu ◽  
Helga Bergmeister ◽  
...  

AbstractActivation of inflammatory and procoagulant mechanisms is thought to contribute significantly to the initiation of restenosis, a common complication after balloon angioplasty of obstructed arteries. During this process, expression of tissue factor (TF) represents one of the major physiologic triggers of coagulation that results in thrombus formation and the generation of additional signals leading to vascular smooth muscle cell (VSMC) proliferation and migration. In this study, we have investigated the mechanisms by which inhibition of coagulation at an early stage through overexpression of tissue factor pathway inhibitor (TFPI), an endogenous inhibitor of TF, might reduce restenosis. In a rabbit femoral artery model, percutaneous delivery of TFPI using a recombinant adenoviral vector resulted in a significant reduction of the intimamedia ratio 21 days after injury. Investigating several markers of inflammation and coagulation, we found reduced neointimal expression of monocyte chemoattractant protein-1 (MCP-1), lesional monocyte infiltration, and expression of vascular TF, matrix metalloproteinase-2 (MMP-2), and MMP-9. Moreover, overexpression of TFPI suppressed the autocrine release of platelet-derived growth factor BB (PDGF-BB), MCP-1, and MMP-2 in response to factors VIIa and Xa from VSMCs in vitro and inhibited monocyte TF activity. These results suggest that TFPI exerts its action in vivo through not only thrombotic, but also nonthrombotic mechanisms.


Sign in / Sign up

Export Citation Format

Share Document