Mechanism of Action of Plasminogen Activators

1999 ◽  
Vol 82 (08) ◽  
pp. 974-982 ◽  
Author(s):  
Ronald Stewart ◽  
James Fredenburgh ◽  
Jeffrey Weitz

IntroductionAcute coronary ischemic syndromes and stroke are usually caused by thrombosis in arteries where obstruction leads to ischemia of the heart or brain, respectively. Likewise, venous thrombosis predisposes to pulmonary emboli that cause infarction of lung tissue by blocking pulmonary arteries. Although antithrombotic drugs form the cornerstone of treatment of established thrombosis, pharmacologic lysis of fibrin thrombi, using plasminogen activators, is a widely used approach for treatment of acute myocardial infarction and selected cases of stroke or venous thromboembolism.Plasminogen activators cause thrombus dissolution by initiating fibrinolysis (Fig. 1). The fibrinolytic system is comprised of inactive plasminogen, which is converted to plasmin by plasminogen activators.1 Plasmin, a trypsin-like serine protease, degrades fibrin into soluble fibrin degradation products. The fibrinolytic system is regulated to provide efficient localized activation of plasminogen on the fibrin surface, yet prevent systemic plasminogen activation. To localize plasminogen activation to the fibrin surface, both plasminogen and tissue-type plasminogen activator (t-PA), the major initiator of intravascular fibrinolysis, bind to fibrin. Plasminogen activator inhibitors,2 the most important of which is type-1 plasminogen activator inhibitor (PAI-1), prevent excessive plasminogen activation by t-PA and urokinase-type plasminogen activator (u-PA). Systemic plasmin is rapidly inhibited by α2-antiplasmin, whereas plasmin generated on the fibrin surface is relatively protected from inactivation by α2-antiplasmin.3 The beneficial effect of thrombolytic therapy reflects dissolution of fibrin within occlusive thrombi and subsequent restoration of antegrade blood flow. Bleeding, the major side effect of thrombolytic therapy, occurs because plasmin is a relatively nonspecific enzyme that does not distinguish between fibrin in occlusive thrombi and fibrin in hemostatic plugs. In addition, circulating plasmin also degrades fibrinogen and other clotting factors, a phenomenon known as the systemic lytic state. Although the contribution of the systemic lytic state to bleeding remains controversial, much attention has focussed on the development of plasminogen activators that produce thrombolysis without depleting circulating fibrinogen in the hope that agents with greater fibrin-specificity will produce less bleeding.In addition to causing bleeding, currently available plasminogen activators have other limitations. Despite aggressive dosing regimens and adjunctive antithrombotic drugs, up to 25% of coronary thrombi are resistant to thrombolysis at 60 to 90 minutes. Early thrombotic reocclusion of previously opened coronary arteries further reduces the benefits of thrombolytic therapy.4-6 These problems have triggered the quest for more potent thrombolytic agents that have the potential to overcome factors that render some thrombi resistant to lysis. Furthermore, to simplify administration, plasminogen activators with longer half-lives have been developed so that bolus dosing is possible.This chapter reviews the mechanism of action of currently available plasminogen activators, including agents with greater fibrin-specificity, longer half-lives, and a potential for increased thrombolytic potency.

1993 ◽  
Vol 70 (05) ◽  
pp. 867-872 ◽  
Author(s):  
Dingeman C Rijken ◽  
Gerard A W de Munk ◽  
Annie F H Jie

SummaryIn order to define the possible effects of heparin on the fibrinolytic system under physiological conditions, we studied the interactions of this drug with plasminogen and its activators at various ionic strengths. As reported in recent literature, heparin stimulated the activation of Lys-plasminogen by high molecular weight (HMW) and low molecular weight (LMW) two-chain urokinase-type plasminogen activator (u-PA) and two-chain tissue-type plasminogen activator (t-PA) 10- to 17-fold. Our results showed, however, that this stimulation only occurred at low ionic strength and was negligible at a physiological salt concentration. Direct binding studies were performed using heparin-agarose column chromatography. The interaction between heparin and Lys-plasminogen appeared to be salt sensitive, which explains at least in part why heparin did not stimulate plasminogen activation at 0.15 M NaCl. The binding of u-PA and t-PA to heparinagarose was less salt sensitive. Results were consistent with heparin binding sites on both LMW u-PA and the amino-terminal part of HMW u-PA. Single-chain t-PA bound more avidly than two-chain t-PA. The interactions between heparin and plasminogen activators can occur under physiological conditions and may modulate the fibrinolytic system.


1999 ◽  
Vol 81 (04) ◽  
pp. 601-604 ◽  
Author(s):  
Hiroyuki Matsuno ◽  
Osamu Kozawa ◽  
Masayuki Niwa ◽  
Shigeru Ueshima ◽  
Osamu Matsuo ◽  
...  

SummaryThe role of fibrinolytic system components in thrombus formation and removal in vivo was investigated in groups of six mice deficient in urokinase-type plasminogen activator (u-PA), tissue-type plasminogen activator (t-PA), or plasminogen activator inhibitor-1 (PAI-1) (u-PA-/-, t-PA-/- or PAI-1-/-, respectively) or of their wild type controls (u-PA+/+, t-PA+/+ or PAI-1+/+). Thrombus was induced in the murine carotid artery by endothelial injury using the photochemical reaction between rose bengal and green light (540 nm). Blood flow was continuously monitored for 90 min on day 0 and for 20 min on days 1, 2 and 3. The times to occlusion after the initiation of endothelial injury in u-PA+/+, t-PA+/+ or PAI-1+/+ mice were 9.4 ± 1.3, 9.8 ± 1.1 or 9.7 ± 1.6 min, respectively. u-PA-/- and t-PA-/- mice were indistinguishable from controls, whereas that of PAI-1-/- mice were significantly prolonged (18.4 ± 3.7 min). Occlusion persisted for the initial 90 min observation period in 10 of 18 wild type mice and was followed by cyclic reflow and reocclusion in the remaining 8 mice. At day 1, persistent occlusion was observed in 1 wild type mouse, 8 mice had cyclic reflow and reocclusion and 9 mice had persistent reflow. At day 2, all injured arteries had persistent reflow. Persistent occlusion for 90 min on day 0 was observed in 3 u-PA-/-, in all t-PA-/- mice at day 1 and in 2 of the t-PA-/-mice at day 2 (p <0.01 versus wild type mice). Persistent patency was observed in all PAI-1-/- mice at day 1 and in 5 of the 6 u-PA-/- mice at day 2 (both p <0.05 versus wild type mice). In conclusion, t-PA increases the rate of clot lysis after endothelial injury, PAI-1 reduces the time to occlusion and delays clot lysis, whereas u-PA has little effect on thrombus formation and spontaneous lysis.


1988 ◽  
Vol 60 (02) ◽  
pp. 247-250 ◽  
Author(s):  
H R Lijnen ◽  
L Nelles ◽  
B Van Hoef ◽  
F De Cock ◽  
D Collen

SummaryRecombinant chimaeric molecules between tissue-type plasminogen activator (t-PA) and single chain urokinase-type plasminogen activator (scu-PA) or two chain urokinase-type plasminogen activator (tcu-PA) have intact enzymatic properties of scu-PA or tcu-PA towards natural and synthetic substrates (Nelles et al., J Biol Chem 1987; 262: 10855-10862). In the present study, we have compared the reactivity with inhibitors of both the single chain and two chain variants of recombinant u-PA and two recombinant chimaeric molecules between t-PA and scu-PA (t-PA/u-PA-s: amino acids 1-263 of t-PA and 144-411 of u-PA; t-PA/u-PA-e: amino acids 1-274 of t-PA and 138-411 of u-PA). Incubation with human plasma in the absence of a fibrin clot for 3 h at 37° C at equipotent concentrations (50% clot lysis in 2 h), resulted in significant fibrinogen breakdown (to about 40% of the normal value) for all two chain molecules, but not for their single chain counterparts. Preincubation of the plasminogen activators with plasma for 3 h at 37° C, resulted in complete inhibition of the fibrinolytic potency of the two chain molecules but did not alter the potency of the single chain molecules. Inhibition of the two chain molecules occurred with a t½ of approximately 45 min. The two chain variants were inhibited by the synthetic urokinase inhibitor Glu-Gly-Arg-CH2CCl with apparent second-order rate constants of 8,000-10,000 M−1s−1, by purified α2-antiplasmin with second-order rate constants of about 300 M−1s−1, and by plasminogen activator inhibitor-1 (PAI-1) with second-order rate constants of approximately 2 × 107 M−1s−1.It is concluded that the reactivity of single chain and two chain forms of t-PA/u-PA chimaers with inhibitors is very similar to that of the single and two chain forms of intact u-PA.


1993 ◽  
Vol 69 (05) ◽  
pp. 466-472 ◽  
Author(s):  
M Colucci ◽  
L G Cavallo ◽  
G Agnelli ◽  
A Mele ◽  
R Bürgi ◽  
...  

SummaryTwo hybrid plasminogen activators (K2tu-PA and FK2tu-PA), linking the kringle 2 domain or the finger plus the kringle 2 domains of tissue-type plasminogen activator (t-PA) to the catalytic domain of single-chain urokinase-type plasminogen activator (scu-PA) were studied. At variance with similar constructs previously reported, they were obtained by fusion of the t-PA and scu-PA derived portions at their plasmin cleavage site (between Arg275 of t-PA and Ile159 of scu-PA), thus eliminating from scu-PA the two peptide bonds (Glu143-Leu144 and Arg156-Phe157) that lead to low molecular weight scu-PA and to thrombin-inactivated tcu-PA. The specific activities of K2tu-PA and FK2tu-PA, as measured by fibrin plate were 2.5 × 106 and 1.0 × 106 t-PA equivalent units/mg, respectively. Activation of plasminogen by hybrid PAs was stimulated by both CNBr-digested fibrinogen (40- and 80-fold) and Des-A-fibrin monomers (6- and 12-fold). The relatively weak stimulation of chimeric PAs by minimally degraded fibrin monomers was consistent with their reduced fibrin binding capacity. Like scu-PA, the chimeric PAs, in the single-chain form, were insensitive to inhibition, as they retained full activity after prolonged incubation in plasma and did not interact with SDS-reactivated recombinant PAI-1. The concentration producing 50% lysis of blood clots in 3 h was 0.5 μg/ml for K2tu-PA and 1 μg/ml for FK2tu-PA, as compared to 0.5 μg/ml and >2 μg/ml for t-PA and scu-PA, respectively. Plasminogen and α2-antiplasmin consumption induced by the hybrid PAs in clot-free plasma was comparable to (K2tu-PA) or lower than (FK2tu-PA) that induced by either t-PA or scu-PA. When exposed to plasmin, the hybrids were completely converted into two-chain molecules with full enzymatic activity. At variance with u-PA, however, the two-chain recombinant activators still required fibrin for full expression of activity. These data indicate that the products of such “artificial” fusion behave like true chimeras without loss of biological activity. The insensitivity to thrombin inactivation and to the proteolytic cleavage leading to low molecular weight scu-PA might confer enhanced stability to the molecules, especially at thrombus level. Moreover, if the thrombolytic activity observed in vitro is maintained in vivo, the prolonged half life of these hybrids should result in higher plasma levels of activator and thus in more extensive and rapid lysis.


1992 ◽  
Vol 67 (06) ◽  
pp. 697-701 ◽  
Author(s):  
J J Emeis ◽  
A Brouwer ◽  
R J Barelds ◽  
M A Horan ◽  
S K Durham ◽  
...  

SummaryAged rats are more susceptible to endotoxin-induced effects, including microthrombosis and platelet aggregation, than are young rats. To investigate whether changes in the fibrinolytic system might be involved, we investigated the fibrinolytic activity in plasma euglobulin fractions and tissues (lung and heart) of young (6-months old) and aged (24-months old) rats under baseline conditions and after challenge with endotoxin. Aged rats had lower plasma levels of tissue-type plasminogen activator (t-PA) and of urokinase-type PA (u-PA) activity. PA inhibitor (PAI) activity was higher in the plasma of aged rats, as was t-PA activity in lung and heart.Rats were treated with either a low dose (1 μg/kg) or a high dose (10 mg/kg) of endotoxin. Both treatments induced a transient phase of increased blood fibrinolytic activity, as evidenced by higher levels of tissue-type plasminogen activator (t-PA) activity and decreased levels of PA inhibitor (PAI) activity. Over time, the fibrinolytic activity decreased, probably due to increased levels of PA inhibitor.Both the early increase in t-PA activity, and the subsequent increase in PAI activity, were more pronounced in the aged rats, as compared with the younger rats, after the high dose of endotoxin. The aged rats also responded to an injection of interleukin-1β or tumor necrosis factor-α with a larger increase of PAI activity than did the younger rats.Together the data suggest that, compared to young rats, aged rats have a decreased base-line plasma fibrinolytic activity, while their fibrinolytic system is more responsive to challenge by endotoxin and cytokines.


1986 ◽  
Vol 56 (01) ◽  
pp. 035-039 ◽  
Author(s):  
D Collen ◽  
F De Cock ◽  
E Demarsin ◽  
H R Lijnen ◽  
D C Stump

SummaryA potential synergic effect of tissue-type plasminogen activator (t-PA), single-chain urokinase-type plasminogen activator (scuPA) or urokinase on clot lysis was investigated in a whole human plasma system in vitro. The system consisted of a human plasma clot labeled with 125I-fibrinogen, immersed in titrated whole human plasma, to which the thrombolytic agents were added. Clot lysis was quantitated by measurement of released 125I, and activation of the fibrinolytic system in the surrounding plasma by measurements of fibrinogen and α2-antiplasmin.t-PA, scu-PA and urokinase induced a dose-dependent and time-dependent clot lysis; 50 percent lysis after 2 h was obtained with 5 nM t-PA, 20 nM scu-PA and 12 nM urokinase. At these concentrations no significant activation of the fibrinolytic system in the plasma was observed with t-PA and scu-PA, whereas urokinase caused significant α2-antiplasmin consumption and concomitant fibrinogen degradation. The shape of the dose-response curves was different; t-PA and urokinase showed a log linear dose-response whereas that of scu-PA was sigmoidal.


Blood ◽  
2001 ◽  
Vol 97 (6) ◽  
pp. 1703-1711 ◽  
Author(s):  
Frederic Lluı́s ◽  
Josep Roma ◽  
Mònica Suelves ◽  
Maribel Parra ◽  
Gloria Aniorte ◽  
...  

Plasminogen activators urokinase-type plasminogen activator (uPA) and tissue-type plasminogen activator (tPA) are extracellular proteases involved in various tissue remodeling processes. A requirement for uPA activity in skeletal myogenesis was recently demonstrated in vitro. The role of plasminogen activators in skeletal muscle regeneration in vivo in wild-type, uPA-deficient, and tPA-deficient mice is investigated here. Wild-type and tPA−/− mice completely repaired experimentally damaged skeletal muscle. In contrast, uPA−/− mice had a severe regeneration defect, with decreased recruitment of blood-derived monocytes to the site of injury and with persistent myotube degeneration. In addition, uPA-deficient mice accumulated fibrin in the degenerating muscle fibers; however, the defibrinogenation of uPA-deficient mice resulted in a correction of the muscle regeneration defect. A similar severe regeneration deficit with persistent fibrin deposition was also reproducible in plasminogen-deficient mice after injury, suggesting that fibrinolysis by uPA-mediated plasminogen activation plays a fundamental role in skeletal muscle regeneration. In conclusion, the uPA-plasmin system is identified as a critical component of the mammalian skeletal muscle regeneration process, possibly because it prevents intramuscular fibrin accumulation and contributes to the adequate inflammatory response after injury. These studies demonstrate the requirement of an extracellular proteolytic cascade during muscle regeneration in vivo.


Sign in / Sign up

Export Citation Format

Share Document