The Role of Protein S in the Activation of Thrombin Activatable Fibrinolysis Inhibitor (TAFI) and Regulation of Fibrinolysis

2001 ◽  
Vol 86 (10) ◽  
pp. 1040-1046 ◽  
Author(s):  
Laurent Mosnier ◽  
Joost Meijers ◽  
Bonno Bouma

SummaryThrombin activatable fibrinolysis inhibitor (TAFI) is a carboxypeptidase B-like proenzyme that after activation by thrombin downregulates fibrinolysis. Thrombomodulin stimulates the activation of both TAFI and protein C whereas activated protein C inhibits the activation of TAFI by downregulation of thrombin formation, a process in which protein S acts as a cofactor. Here we determined the role of protein S in the activation of TAFI and regulation of fibrinolysis. Depletion of protein S from plasma or inhibition of protein S by specific antibodies resulted in an increased rate of TAFI activation and in an increased maximum of TAFIa activity generated. The effect on the rate of TAFI activation could be attributed to the APC-independent anticoagulant function of protein S whereas the effect on the maximum activity could be attributed to the APC cofactor function of protein S. Therefore it is concluded that protein S inhibits TAFI activation in two ways. On one hand, protein S functions as a cofactor for APC which results in a reduction of the maximum induced TAFI activity and on the other hand protein S inhibits the initial thrombin formation independently of APC which results in a decreased rate of TAFI activation. The effect of the APC-independent anticoagulant activity of protein S on the activation of TAFI provides a new mechanism for the regulation of fibrinolysis in the early stages of clot formation.

1996 ◽  
Vol 76 (03) ◽  
pp. 397-403 ◽  
Author(s):  
Merel van Wijnen ◽  
Jeanette G Stam ◽  
Cornells van't Veer ◽  
Joost C M Meijers ◽  
Pieter H Reitsma ◽  
...  

SummaryProtein S is a vitamin-K dependent glycoprotein involved in the regulation of the anticoagulant activity of activated protein C (APC). Recent data showed a direct anticoagulant role of protein S independent of APC, as demonstrated by the inhibition of prothrombinase and tenase activity both in plasma and in purified systems. This anticoagulant effect of protein S can be explained either by a direct interaction of protein S with one of the components of the complexes and/or by the interference with the binding of these components to phospholipid surfaces.During our investigation we noted that protein S preparations purified in different ways and derived from different sources, expressed discrepant APC cofactor and direct anticoagulant activity. In order to elucidate these differences and to study the mechanism of the APC-inde-pendent activity of protein S, we compared the protein S preparations in phospholipid-binding properties and anticoagulant activity. The dissociation constant for the binding of protein S to immobilized phospholipids ranged from 7 to 74 nM for the different protein S preparations. APC-independent inhibition of both prothrombinase and tenase activity performed on phospholipid vesicles and in plasma showed a strong correlation with the affinity for phospholipids. The APC-independent activity could be abolished by monoclonal antibodies that were either calcium-dependent and/or directed against epitopes in the Gla-region of protein S, suggesting that the protein S-phospholipid interaction is crucial for the APC-independent anticoagulant function of protein S. Protein S preparations with a low APC-independent activity expressed a high APC-cofactor activity suggesting that the affinity of protein S for phospholipids is of less importance in the expression of APC-cofactor activity of protein S.We conclude that high affinity interactions of protein S with the membrane surface are essential for the direct anticoagulant activity of protein S and we suggest that inhibition of the prothrombinase and the tenase complex by protein S is a consequence of the occupation of the phospholipid surface by protein S molecules.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 21-21
Author(s):  
Roger JS Preston ◽  
Shona Harmon ◽  
Fionnuala B Ni Ainle ◽  
Jennifer A Johnson ◽  
Moya Cunningham ◽  
...  

Abstract Activated protein C (APC) plays a critical anticoagulant role by inactivating factor Va (FVa) and factor VIIIa (FVIIIa) and thus down-regulating thrombin generation. In addition, APC bound to the endothelial cell protein C receptor (EPCR) can initiate PAR-1 mediated cytoprotective signalling. Although protein S constitutes a critical cofactor for APC anticoagulant function, the molecular basis through which protein S interacts with APC is not fully understood. In this study, we employed a site-directed mutagenesis strategy to characterise the effects of four single amino acid substitutions (D35T, D36A, L38D and A39V) within a region of the APC Gla domain important for protein S cofactor enhancement. To maintain Gla domain structural integrity, each residue was substituted with the corresponding residue of the human prothrombin Gla domain. Protein C variants were expressed in HEK 293 cells and purified by ion-exchange chromatography. Upon activation, the amidolytic activity of each recombinant APC variant was identical to that of wild type APC. The anticoagulant function of recombinant wild type and variant APC was compared in a tissue factor-initiated thrombin generation assay using protein C-deficient plasma. Wild type APC diminished thrombin generation in a concentration-dependent manner as expected. Variants APC-D35T, APC-D36A and APC-A39V exhibited only mildly impaired (<2-fold) anticoagulant activity compared to wild type APC. The anticoagulant activity of APC-L38D, however, was severely impaired. APC-L38D was unable to achieve half-maximal inhibition of endogenous thrombin potential (ETP) at APC concentrations as high as 150nM, compared to wild type APC, which achieved half-maximal inhibition at 7.2nM APC. To clarify the role of Leu-38 in facilitating APC anticoagulant function, we further studied the ability of APC-L38D to be stimulated in protein S-deficient plasma reconstituted with plasma-purified protein S. Co-incubation of wild type APC with increasing protein S concentration (12.5–200nM) caused a corresponding reduction in ETP (IC50 = 24nM protein S). In contrast, APC-L38D was unresponsive to protein S. In the presence of APC-L38D, ETP was reduced only 22% at 1.5μM protein S (10-fold higher than plasma free protein S). In a phospholipid-dependent FVa proteolysis time course assay, both wild type APC and APC-L38D rapidly reduced FVa cofactor activity, indicating that the observed impaired plasma anticoagulant activity of APC-L38D is not mediated by impaired interaction with anionic phospholipids or FVa. In a modified version of this assay, wild type APC-mediated FVa proteolysis was rapidly enhanced by added protein S, with half-maximal inhibition observed at 5nM protein S. In contrast, APC-L38D exhibited no protein S-enhanced FVa proteolysis. Cumulatively, these data confirm that Leu-38 mediates APC anticoagulant function in plasma by facilitating critical protein S cofactor enhancement of FVa proteolysis. Previous studies have shown that APC Gla domain mutations can influence EPCR binding, a pre-requisite for PAR-1 mediated cytoprotective signalling. Consequently, we assessed APC binding to sEPCR using surface plasmon resonance. Binding affinities of APC-L38D and wild type APC were very similar (KD 112±25nM versus 117±36nM). Furthermore, the ability of APC-L38D to protect EAhy926 cells from staurosporine-induced apoptosis was also investigated using RT-PCR quantification of pro- (bax) and anti- (bcl-2) apoptotic gene expression. Pre-incubation with APC-L38D significantly reduced the bax/bcl-2 ratio to the same extent as wild type APC. The EPCR-dependence of these anti-apoptotic activities was confirmed using RCR-252, (an inhibitory anti-EPCR antibody) which ablated the cytoprotective effect of both APC species. In conclusion, we demonstrate that a single amino acid substitution (L38D) can significantly impair APC anticoagulant activity due to elimination of protein S cofactor enhancement. However, despite the location of Leu-38 in the Gla domain, APC-L38D retains its ability to bind EPCR, and trigger PAR-1 mediated cytoprotective signalling in a manner indistinguishable from that of wild type APC. Consequently, elimination of protein S cofactor enhancement of APC anticoagulant function represents a novel and effective strategy by which to dissociate the anticoagulant and cytoprotective functions of APC for potential therapeutic gain.


2005 ◽  
Vol 94 (07) ◽  
pp. 60-68 ◽  
Author(s):  
Likui Yang ◽  
Chandrashekhara Manithody ◽  
Alireza R. Rezaie

SummaryThe autolysis loop of activated protein C (APC) is five residues longer than the autolysis loop of other vitamin K-dependent coagulation proteases. To investigate the role of this loop in the zymogenic and anticoagulant properties of the molecule, a protein C mutant was constructed in which the autolysis loop of the protein was replaced with the corresponding loop of factor X. The protein C mutant was activated by thrombin with ~5-fold higher rate in the presence of Ca2+. Both kinetics and direct binding studies revealed that the Ca2+ affinity of the mutant has been impaired ∼3-fold. The result of a factorVa degradation assay revealed that the anticoagulant function of the mutant has been improved 4–5-fold in the absence but not in the presence of protein S. The improvement was due to a better recognition of both the P1-Arg506 and P1-Arg306 cleavage sites by the mutant protease. However, the plasma half-life of the mutant was markedly shortened due to faster inactivation by plasma serpins. These results suggest that the autolysis loop of protein C is critical for the Ca2+-dependence of activation by thrombin. Moreover, a longer autolysis loop in APC is not optimal for interaction with factor Va in the absence of protein S, but it contributes to the lack of serpin reactivity and longer half-life of the protease in plasma.


2017 ◽  
Vol 117 (07) ◽  
pp. 1358-1369 ◽  
Author(s):  
Changming Chen ◽  
Likui Yang ◽  
Bruno O. Villoutreix ◽  
Xuefeng Wang ◽  
Qiulan Ding ◽  
...  

SummaryProtein C is a vitamin K–dependent serine protease zymogen in plasma which upon activation by thrombin in complex with thrombomodulin (TM) down-regulates the clotting cascade by a feedback loop inhibition mechanism. Activated protein C (APC) exerts its anticoagulant function through protein S-dependent degradation of factors Va and VIIIa. We recently identified a venous thrombosis patient whose plasma level of protein C antigen is normal, but its anticoagulant activity is only 34% of the normal level. Genetic analysis revealed that the proband and her younger brother carry a novel heterozygous mutation c.346G>A, p.Gly74Ser (G74S) in PROC. Thrombin generation assay indicated that the TM-dependent anticoagulant activity of the proband’s plasma has been significantly impaired. We expressed protein C-G74S in mammalian cells and characterised its properties in established coagulation assays. We demonstrate that the protein C variant can be normally activated by the thrombin-TM complex and the resulting APC mutant also exhibits normal amidolytic and proteolytic activities toward both FVa and FVIIIa. However, it was discovered the protein S-dependent catalytic activity of APC variant toward both procoagulant cofactors has been significantly impaired. Protein S concentration-dependence of FVa degradation revealed that the capacity of APC variant to interact with the cofactor has been markedly impaired. The same results were obtained for inactivation of FVa-Leiden suggesting that the protein S-dependent activity of APC variant toward cleavage of Arg-306 site has been adversely affected. These results provide insight into the mechanism through which G74S substitution in APC causes thrombosis in the proband carrying this mutation.


2012 ◽  
Vol 107 (03) ◽  
pp. 468-476 ◽  
Author(s):  
Ilze Dienava-Verdoold ◽  
Marina R. Marchetti ◽  
Liane C. J. te Boome ◽  
Laura Russo ◽  
Anna Falanga ◽  
...  

SummaryThe natural anticoagulant protein S contains a so-called thrombin-sensitive region (TSR), which is susceptible to proteolytic cleavage. We have previously shown that a platelet-associated protease is able to cleave protein S under physiological plasma conditions in vitro. The aim of the present study was to investigate the relation between platelet-associated protein S cleaving activity and in vivo protein S cleavage, and to evaluate the impact of in vivo protein S cleavage on its anticoagulant activity. Protein S cleavage in healthy subjects and in thrombocytopenic and thrombocythaemic patients was evaluated by immunological techniques. Concentration of cleaved and intact protein S was correlated to levels of activated protein C (APC)-dependent and APC-independent protein S anticoagulant activity. In plasma from healthy volunteers 25% of protein S is cleaved in the TSR. While in plasma there was a clear positive correlation between levels of intact protein S and both APC-dependent and APC-independent protein S anticoagulant activities, these correlations were absent for cleaved protein S. Protein S cleavage was significantly increased in patients with essential thrombocythaemia (ET) and significantly reduced in patients with chemotherapy-induced thrombocytopenia. In ET patients on cytoreductive therapy, both platelet count and protein S cleavage returned to normal values. Accordingly, platelet transfusion restored cleavage of protein S to normal values in patients with chemotherapy-induced thrombocytopenia. In conclusion, proteases from platelets seem to contribute to the presence of cleaved protein S in the circulation and may enhance the coagulation response in vivo by down regulating the anticoagulant activity of protein S.


Blood ◽  
1995 ◽  
Vol 85 (7) ◽  
pp. 1815-1821 ◽  
Author(s):  
C van't Veer ◽  
TM Hackeng ◽  
D Biesbroeck ◽  
JJ Sixma ◽  
BN Bouma

Protein S is a vitamin K-dependent nonenzymatic coagulation factor involved in the regulation of activated protein C (aPC). In this study, we report an aPC-independent anticoagulant function of protein S in plasma under flow conditions. Plasma, anticoagulated with low-molecular-weight heparin allowing tissue factor-dependent prothrombin activation, was perfused at a wall shear rate of 100 s-1 over tissue factor containing matrices of stimulated endothelial cells placed in a perfusion chamber. Fractions were collected in time at the outlet and prothrombin activation was determined by measuring the activation fragment F1+2 of prothrombin. In normal plasma, a time-dependent prothrombin activation was detected by the generation of fragment1+2. Prothrombin activation had ceased after 12 minutes perfusion, independent of the amount of tissue factor present in the matrix. Depletion of protein S from plasma or inhibition of protein S in plasma by monoclonal antibodies induced a 5- to 25-fold increase of prothrombin activation on the procoagulant endothelial cell matrix. A prolonged prothrombin activation was detected in protein S-depleted plasma up to 20 minutes after onset of the thrombin generation. The increased prothrombin activation in protein S-depleted plasma could not be explained by the absence of the cofactor function of protein S for aPC because depletion of protein C from plasma did not result in increased prothrombin activation. These data provide further evidence for a strong anticoagulant function of protein S in plasma independent from activated protein C.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3075-3075
Author(s):  
Thomas J Cramer ◽  
John H. Griffin ◽  
Andrew J. Gale

Abstract Factor V (FV) is a cofactor that promotes inactivation of activated factor VIII (FVIIIa) by the activated protein C and protein S complex (APC/protein S). Cleavage in FV at Arg506 is required for proteolytic inactivation of FVa, but also for the anticoagulant function of FV as cofactor for APC in the inactivation of FVIIIa. This is demonstrated by the well known FVLeiden mutant with Arg506 mutated to glutamine (Q506), causing APC resistance due to both impaired sensitivity of Q506FVa to APC and reduced cofactor activity of Q506FV for APC inactivation of FVIIIa. However, FVIIIa loses activity rapidly due to dissociation of the A2 domain, and this may be the primary mechanism of FVIIIa inactivation. Thus, we question whether the APC-mediated inactivation of FVIIIa is relevant to the FVLeiden thrombophilic phenotype. Rather, we hypothesized that FV can function as an anticoagulant cofactor for the APC/protein S complex in the inactivation of activated FV (FVa). To test this hypothesis, we designed a coagulation assay initiated by tissue factor that was sensitive to FV but was insensitive to FVIII. FV was titrated into FV deficient plasma and clotting times were measured in absence and presence of APC to determine an APC sensitivity ratio (APCsr). An increase in the APCsr was observed as the level of FV was increased, suggesting an anticoagulant function of FV. Similar titrations were done with Q506FV, showing no increase in clotting time when APC was present and an APCsr of 1.0 in the presence of Q506 FV. Control experiments confirmed that this clotting assay was insensitive to the presence or absence of FVIII; thus, these assays were reflecting FVa inactivation. The potential anticoagulant effect of FV as cofactor for APC in FVa inactivation was further investigated by monitoring proteolysis of purified FVa by APC over time using SDS PAGE. Recombinant purified FVa was labeled with a fluorescent dye, and then subjected to proteolysis by APC/protein S in the absence or presence of FV in a time course. The resulting FVa fragments seen on SDS gels reflected the known cleavages at Arg306 and Arg506, and the FVa cleavage products were quantified by digital fluorescent scanning of the gel. FV stimulated a small but statistically insignificant increase in the rate of FVa cleavage by APC/protein S. Thus, in our experimental conditions, we found a significant anticoagulant effect of FV in clotting assays that were sensitive to FV but not sensitive to FVIII whereas in purified reaction mixtures there was not a significant enhancement by FV of APC proteolysis of FVa. These data contrasting FV’s apparent APC-cofactor activities between plasma and purified reaction mixtures lead us to speculate that other factors or mechanisms present in plasma also contribute to the anticoagulant function of APC in a FV dependent manner.


Blood ◽  
1999 ◽  
Vol 93 (8) ◽  
pp. 2552-2558 ◽  
Author(s):  
Elisabeth Thorelli ◽  
Randal J. Kaufman ◽  
Björn Dahlbäck

Activated protein C (APC) inhibits coagulation by cleaving and inactivating procoagulant factor Va (FVa) and factor VIIIa (FVIIIa). FV, in addition to being the precursor of FVa, has anticoagulant properties; functioning in synergy with protein S as a cofactor of APC in the inhibition of the FVIIIa-factor IXa (FIXa) complex. FV:Q506 isolated from an individual homozygous for APC-resistance is less efficient as an APC-cofactor than normal FV (FV:R506). To investigate the importance of the three APC cleavage sites in FV (Arg-306, Arg-506, and Arg-679) for expression of its APC-cofactor activity, four recombinant FV mutants (FV:Q306, FV:Q306/Q506, FV:Q506, and FV:Q679) were tested. FV mutants with Gln (Q) at position 506 instead of Arg (R) were found to be poor APC-cofactors, whereas Arg to Gln mutations at positions 306 or 679 had no negative effect on the APC-cofactor activity of FV. The loss of APC-cofactor activity as a result of the Arg-506 to Gln mutation suggested that APC-cleavage at Arg-506 in FV is important for the ability of FV to function as an APC-cofactor. Using Western blotting, it was shown that both wild-type FV and mutant FV was cleaved by APC during the FVIIIa inhibition. At optimum concentrations of wild-type FV (11 nmol/L) and protein S (100 nmol/L), FVIIIa was found to be highly sensitive to APC with maximum inhibition occurring at less than 1 nmol/L APC. FV:Q506 was inactive as an APC-cofactor at APC-concentrations ≤ 1 nmol/L and only partially active at higher APC concentrations. Our results show that increased expression of FV anticoagulant activity correlates with APC-mediated cleavage at Arg-506 in FV, but not with cleavage at Arg-306 nor at Arg-679.


2001 ◽  
Vol 360 (2) ◽  
pp. 499-506 ◽  
Author(s):  
Delphine BORGEL ◽  
Pascale GAUSSEM ◽  
Christiane GARBAY ◽  
Christilla BACHELOT-LOZA ◽  
Tahar KAABACHE ◽  
...  

In the vitamin K-dependent protein family, only protein S (PS) contains a thrombin-sensitive region (TSR), located between the domain containing the γ-carboxyglutamic acid and the first epidermal growth factor-like domain. To better define the role of TSR in the PS molecule, we expressed a recombinant human PS (rHPS) and its analogue lacking TSR (rTSR-less), and prepared factor Xa- and thrombin-cleaved rHPS. A peptide reproducing TSR (TSR-peptide) was also synthesized in an attempt to obtain direct evidence of the domain involvement in PS anticoagulant activity. In a coagulation assay, both rTSR-less and factor Xa-cleaved PS were devoid of activated protein C cofactor activity. The TSR-peptide did not inhibit rHPS activity, showing that TSR must be embedded in the native protein to promote interaction with activated protein C. The binding of rHPS to activated platelets and to phospholipid vesicles was not modified after factor Xa- or thrombin-mediated TSR cleavage, whereas the binding of rTSR-less was markedly reduced. This suggested a role for TSR in conferring to PS a strong affinity for phospholipid membranes. TSR-peptide did not directly bind to activated platelets or compete with rHPS for phospholipid binding. The results of the present study show that TSR may not interact directly with membranes, but probably constrains the γ-carboxyglutamic acid-rich domain in a conformation allowing optimal interaction with phospholipids.


Sign in / Sign up

Export Citation Format

Share Document