scholarly journals The functional significance of the autolysis loop in protein C and activated protein C

2005 ◽  
Vol 94 (07) ◽  
pp. 60-68 ◽  
Author(s):  
Likui Yang ◽  
Chandrashekhara Manithody ◽  
Alireza R. Rezaie

SummaryThe autolysis loop of activated protein C (APC) is five residues longer than the autolysis loop of other vitamin K-dependent coagulation proteases. To investigate the role of this loop in the zymogenic and anticoagulant properties of the molecule, a protein C mutant was constructed in which the autolysis loop of the protein was replaced with the corresponding loop of factor X. The protein C mutant was activated by thrombin with ~5-fold higher rate in the presence of Ca2+. Both kinetics and direct binding studies revealed that the Ca2+ affinity of the mutant has been impaired ∼3-fold. The result of a factorVa degradation assay revealed that the anticoagulant function of the mutant has been improved 4–5-fold in the absence but not in the presence of protein S. The improvement was due to a better recognition of both the P1-Arg506 and P1-Arg306 cleavage sites by the mutant protease. However, the plasma half-life of the mutant was markedly shortened due to faster inactivation by plasma serpins. These results suggest that the autolysis loop of protein C is critical for the Ca2+-dependence of activation by thrombin. Moreover, a longer autolysis loop in APC is not optimal for interaction with factor Va in the absence of protein S, but it contributes to the lack of serpin reactivity and longer half-life of the protease in plasma.

1987 ◽  
Author(s):  
Peter P Nawroth ◽  
Jerry Brett ◽  
Susan Steinberg ◽  
Charles T Esmon ◽  
David M Stern

The protein C-protein S pathway is closely linked to the vessel wall. In terms of protein C, endothelium has been shown to provide the receptor thrombomodulin, which promotes thrombin-mediated formation of activated protein C. Optimal anticoagulant function of activated protein C requires protein S and a cellular surface. Recent studies have indicated that endothelium can facilitate assembly of the activated protein C-protein S complex and that bovine endothelium expresses specific binding site(s) for protein S which promote its anticoagulant function. Expression of protein S binding sites is subject to down-regulation by Tumor Necrosis Factor (TNF) . Exposure of cultured bovine endothelium to TNF results in decreased 125I-protein s binding and attenuated rates of Factor Va inactivation after 2 hrs followed by negligible 125I-protein S binding and Factor Va inactivation by 10 hrs. These changes persist for over 48 hrs, in contrast to the more transient rise in endothelial cell tissue factor induced by TNF which returns to baseline by 24 hrs.In addition to providing binding sites for protein S, endothelium constitutively synthesizes and releases this vitamin K-dependent anticoagulant cofactor. Release of protein S is blocked by addition of warfarin, indicating that y-carboxylation facilitates the release of intracellular protein S. Morphologic studies, at the level of electron microscope, have shown protein S antigen to be present in cisternae of rough endoplasmic reticulum, the trans face of the golgi and a population of intracellular vesicles which appear to be distributed at the cellular periphery. By immunofluorescence, the distribution of protein S is distinct from that of von Willebrand Factor. The intracellular vesicles containing protein S constitute a storage pool potentially available for rapid release. Treatment of endothelium with norepinephrine results in release of protein S over the next 20 min. Release is half-maximal at a norepinephrine concentration of about 0.1 uM and is not observed with the biologically inactive entantiomer (+) norepinephrine. Norepinephrine-induced release of intracellular protein S can be blocked by prazosine (10-7 7 M), but not by propranolol (10-6 M) or yohimbine (10-5 M). These data are consistent with release of protein S being a receptor-mediated process dependent on an endothelial cell alpha 1 adrenergic receptor. Blockade of norepinephrine-induced release of protein S by pertussis toxin treatment of endothelium further defines the intracellular pathway of protein S and implicates regulatory G proteins in the stimulus-response coupling. Electron microscopic studies have shown that following exposure of endothelium to norepinephrine the intracellular vesicles containing protein S undergo exocytosis at the plasma membrane. These data define a new relationship between the autonomic nervous system and the coagulation mechanism.Protein S is clearly an endothelial cell-associated anticoagulant protein. A specific binding site on the endothelial cell surface can regulate its anticoagulant function on the vessel wall. Endothelial cell synthesis and release of protein S defines a new level of participation of endothelium in the protein C-protein S pathway.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3186-3186
Author(s):  
Rinku Majumder

Abstract 3186 Poster Board III-123 Thrombosis is a serious problem in the United States. The overall estimated incidence (annual occurrence) of deep venous thrombosis is 1 episode for every 1000 persons. Protein S, a vitamin K-dependent protein, is one of the natural anticoagulants found in the blood. Deficiency of protein S is most common protein deficiencies associated with familial venous thrombosis There are studies that suggest an association between arterial thrombosis (stroke, heart attack) in patients with protein S deficiency. At this time, the exact role of protein S deficiency and its relative importance in arterial disease is still being explored by physicians and scientists. Protein S is known as a non-enzymatic cofactor of activated Protein C in the inactivation of factors Va and VIIIa, as part of a negative feedback loop to regulate blood coagulation. Plasma coagulation assays in the absence of activated protein C suggest that Protein S may have other anticoagulant role(s). For example, it has been suggested that Protein S down-regulates thrombin generation by stimulating FXa inhibition by the tissue factor pathway inhibitor (Rosing, J., et al., Thromb Res, 2008. 122 Suppl 1: p. S60-3). It has also been proposed that protein S can directly inhibit the intrinsic Xase complex (Takeyama, M., et al.. Br J Haematol, 2008. 143(3): p. 409-20). But the exact mechanism of how Protein S exerts its anticoagulant effect on factor IXa/VIIIa complex is still unclear. In order to determine the role of Protein S as an anticoagulant in the intrinsic Xase Complex, we have used C6PS (a small six carbon chain synthetic Phosphatidylserine (PS) molecule) that does not occur in vivo, but has been used as a powerful tool in demonstrating the regulation of both factors Xa and Va by binding of molecular PS. Soluble lipid binding can offer invaluable insights into events that would be next to impossible to document on a membrane surface which is complicated as it has surface condensation effect and allosteric effects of different factors. We focus here on the conformation changes of the proteins by using C6PS as a tool. We have determined the binding of Protein S with C6PS by using tryptophan fluorescence and observed a stoichiometric Kd of ∼180 μM.We checked for micelles formation under each experimental condition. We have also determined the direct binding of factor IXa with Protein S by using DEGR-IXa ((5-(dimethylamino)1-naphthalenesulfonyl]-glutamylglycylarginyl chloromethyl ketone) in the presence and absence of C6PS. Our results show that the affinity of binding of DEGR-IXa to Protein S in the presence of C6PS is ∼22 fold tighter (Kd ∼15 nM compared to 324 nM) than without C6PS. We also measured the rate of factor X activation by factor IXa with the addition of increasing concentration of C6PS in the presence and absence of Protein S. We observed that Protein S decreased factor IXa mediated factor X activation by 14 fold. We had previously shown that apparent Kd of factor IXa binding to C6PS during factor X activation was ∼125 μM. But addition of Protein S had an effect on the apparent Kd as it increased to 700 μM indicating the affinity of factor IXa towards C6PS was decreased with the addition of Protein S during factor X activation. From these data we can speculate that Protein S induces a conformational change in factor IXa in the presence of C6PS which may affect the interaction of factor IXa with factor VIIIa, thus affecting the intrinsic Xase complex. Using this useful tool (C6PS), we will characterize the anticoagulant role of Protein S in the intrinsic Xase complex which in turn will give us some insights into this important protein which is a crucial target for therapeutic drugs for venous thrombosis. Disclosures No relevant conflicts of interest to declare.


2001 ◽  
Vol 86 (10) ◽  
pp. 1040-1046 ◽  
Author(s):  
Laurent Mosnier ◽  
Joost Meijers ◽  
Bonno Bouma

SummaryThrombin activatable fibrinolysis inhibitor (TAFI) is a carboxypeptidase B-like proenzyme that after activation by thrombin downregulates fibrinolysis. Thrombomodulin stimulates the activation of both TAFI and protein C whereas activated protein C inhibits the activation of TAFI by downregulation of thrombin formation, a process in which protein S acts as a cofactor. Here we determined the role of protein S in the activation of TAFI and regulation of fibrinolysis. Depletion of protein S from plasma or inhibition of protein S by specific antibodies resulted in an increased rate of TAFI activation and in an increased maximum of TAFIa activity generated. The effect on the rate of TAFI activation could be attributed to the APC-independent anticoagulant function of protein S whereas the effect on the maximum activity could be attributed to the APC cofactor function of protein S. Therefore it is concluded that protein S inhibits TAFI activation in two ways. On one hand, protein S functions as a cofactor for APC which results in a reduction of the maximum induced TAFI activity and on the other hand protein S inhibits the initial thrombin formation independently of APC which results in a decreased rate of TAFI activation. The effect of the APC-independent anticoagulant activity of protein S on the activation of TAFI provides a new mechanism for the regulation of fibrinolysis in the early stages of clot formation.


Blood ◽  
2011 ◽  
Vol 117 (24) ◽  
pp. 6685-6693 ◽  
Author(s):  
Josefin Ahnström ◽  
Helena M. Andersson ◽  
Kevin Canis ◽  
Eva Norstrøm ◽  
Yao Yu ◽  
...  

Abstract Protein S has an important anticoagulant function by acting as a cofactor for activated protein C (APC). We recently reported that the EGF1 domain residue Asp95 is critical for APC cofactor function. In the present study, we examined whether additional interaction sites within the Gla domain of protein S might contribute to its APC cofactor function. We examined 4 residues, composing the previously reported “Face1” (N33S/P35T/E36A/Y39V) variant, as single point substitutions. Of these protein S variants, protein S E36A was found to be almost completely inactive using calibrated automated thrombography. In factor Va inactivation assays, protein S E36A had 89% reduced cofactor activity compared with wild-type protein S and was almost completely inactive in factor VIIIa inactivation; phospholipid binding was, however, normal. Glu36 lies outside the ω-loop that mediates Ca2+-dependent phospholipid binding. Using mass spectrometry, it was nevertheless confirmed that Glu36 is γ-carboxylated. Our finding that Gla36 is important for APC cofactor function, but not for phospholipid binding, defines a novel function (other than Ca2+ coordination/phospholipid binding) for a Gla residue in vitamin K–dependent proteins. It also suggests that residues within the Gla and EGF1 domains of protein S act cooperatively for its APC cofactor function.


1996 ◽  
Vol 76 (03) ◽  
pp. 397-403 ◽  
Author(s):  
Merel van Wijnen ◽  
Jeanette G Stam ◽  
Cornells van't Veer ◽  
Joost C M Meijers ◽  
Pieter H Reitsma ◽  
...  

SummaryProtein S is a vitamin-K dependent glycoprotein involved in the regulation of the anticoagulant activity of activated protein C (APC). Recent data showed a direct anticoagulant role of protein S independent of APC, as demonstrated by the inhibition of prothrombinase and tenase activity both in plasma and in purified systems. This anticoagulant effect of protein S can be explained either by a direct interaction of protein S with one of the components of the complexes and/or by the interference with the binding of these components to phospholipid surfaces.During our investigation we noted that protein S preparations purified in different ways and derived from different sources, expressed discrepant APC cofactor and direct anticoagulant activity. In order to elucidate these differences and to study the mechanism of the APC-inde-pendent activity of protein S, we compared the protein S preparations in phospholipid-binding properties and anticoagulant activity. The dissociation constant for the binding of protein S to immobilized phospholipids ranged from 7 to 74 nM for the different protein S preparations. APC-independent inhibition of both prothrombinase and tenase activity performed on phospholipid vesicles and in plasma showed a strong correlation with the affinity for phospholipids. The APC-independent activity could be abolished by monoclonal antibodies that were either calcium-dependent and/or directed against epitopes in the Gla-region of protein S, suggesting that the protein S-phospholipid interaction is crucial for the APC-independent anticoagulant function of protein S. Protein S preparations with a low APC-independent activity expressed a high APC-cofactor activity suggesting that the affinity of protein S for phospholipids is of less importance in the expression of APC-cofactor activity of protein S.We conclude that high affinity interactions of protein S with the membrane surface are essential for the direct anticoagulant activity of protein S and we suggest that inhibition of the prothrombinase and the tenase complex by protein S is a consequence of the occupation of the phospholipid surface by protein S molecules.


1995 ◽  
Vol 74 (05) ◽  
pp. 1271-1275 ◽  
Author(s):  
C M A Henkens ◽  
V J J Bom ◽  
W van der Schaaf ◽  
P M Pelsma ◽  
C Th Smit Sibinga ◽  
...  

SummaryWe measured total and free protein S (PS), protein C (PC) and factor X (FX) in 393 healthy blood donors to assess differences in relation to sex, hormonal state and age. All measured proteins were lower in women as compared to men, as were levels in premenopausal women as compared to postmenopausal women. Multiple regression analysis showed that both age and subgroup (men, pre- and postmenopausal women) were of significance for the levels of total and free PS and PC, the subgroup effect being caused by the differences between the premenopausal women and the other groups. This indicates a role of sex-hormones, most likely estrogens, in the regulation of levels of pro- and anticoagulant factors under physiologic conditions. These differences should be taken into account in daily clinical practice and may necessitate different normal ranges for men, pre- and postmenopausal women.


1992 ◽  
Vol 67 (01) ◽  
pp. 046-049 ◽  
Author(s):  
H A Guglielmone ◽  
M A Vides

SummaryA simple and fast method for the quantitative determination of protein C activity in plasma is here described. The first step consists in the conversion of protein C in the test sample into activated protein C by means of an activator isolated from Southern Copperhead venom. Subsequently, the degradation of factor Va, in presence of protein C-deficient plasma, is measured by the prolongation of the prothrombin time which is proportional to the amount of protein C in the sample. The dose-response curve showed a linear relationship from 6 to 150% protein C activity and the inter- and intra-assay reproducibility was 3.5% and 5.6% respectively. In normal subjects, a mean of protein C level of 98 ± 15% of normal pooled plasma was found. Comparison with the anticoagulant assay in samples of patients with oral anticoagulant, liver cirrhosis, disseminated intravascular coagulation and severe preeclampsia revealed an excellent correlation (r = 0.94, p <0.001). Also, a similar correlation (r = 0.93, p <0.001) existed between amidolytic assay and the method here proposed for all the samples studied without including the oral anticoagulant group. These results allowed us to infer that this method evaluates the ability of protein C to interact with protein S, phospholipids, calcium ions and factor Va.


1993 ◽  
Vol 268 (4) ◽  
pp. 2872-2877
Author(s):  
M.J. Heeb ◽  
R.M. Mesters ◽  
G. Tans ◽  
J. Rosing ◽  
J.H. Griffin

2003 ◽  
Vol 278 (27) ◽  
pp. 24904-24911 ◽  
Author(s):  
Eva A. Norstrøm ◽  
Mårten Steen ◽  
Sinh Tran ◽  
Björn Dahlbäck

Sign in / Sign up

Export Citation Format

Share Document