Integrating Genomics into Health Information Systems

2002 ◽  
Vol 41 (01) ◽  
pp. 25-30 ◽  
Author(s):  
V. Maojo ◽  
G. Lopez-Campos ◽  
F. Martin-Sanchez

Summary Objective: To outline the main issues related to the impact of the data generated by the Human Genome Project on health information systems. A major challenge for medical informatics is identified, consisting of adapting traditional systems to new genetic-based diagnostic and therapeutic tools. Methods: Reviewing and analysing the different health information levels from an organisational complexity point of view. A model is proposed to explain the interactions between health informatics, bioinformatics and molecular medicine. Results: We suggest a new framework that integrates genetic data into health information systems. Using this model, new topics for future research and development are identified. Conclusions: We are witnessing the birth of a new era (post-genomics). In this era technological advancements in genomics offer new opportunities for clinical applications. Medical informaticians should play an important role in this new endeavour.

2011 ◽  
pp. 913-932
Author(s):  
Aisha Naseer ◽  
Lampros K. Stergioulas

Healthcare is a vast domain encapsulating not only multiple sub-domains or sub-sectors but also many diverse operations and logistics within each sub-sector. This diversity needs to be handled in a systematic and well-characterized manner in order to maintain consistency of various healthcare tasks. Integration of health information systems within each healthcare sub-sectors is crucial for ubiquitous access and sharing of information. The emerging technology of HealthGrids holds the promise to successfully integrate health information systems and various healthcare entities onto a common, globally shared and easily accessible platform. Many different types of HealthGrids exist but there lacks a taxonomy to classify them into a hierarchical order. This chapter presents a well-characterized taxonomy of different types of HealthGrid and classifies them into four major types, namely BioGrid, MediGrid, PharmaGrid and CareGrid. Each of these HealthGrids possesses dedicated features and functionalities. The proposed taxonomy serves to better understand the realtionship among various HealthGrid types and would lay a basis for future research.


Author(s):  
Aisha Naseer ◽  
Lampros K. Stergioulas

Healthcare is a vast domain encapsulating not only multiple sub-domains or sub-sectors but also many diverse operations and logistics within each sub-sector. This diversity needs to be handled in a systematic and well-characterized manner in order to maintain consistency of various healthcare tasks. Integration of health information systems within each healthcare sub-sectors is crucial for ubiquitous access and sharing of information. The emerging technology of HealthGrids holds the promise to successfully integrate health information systems and various healthcare entities onto a common, globally shared and easily accessible platform. Many different types of HealthGrids exist but there lacks a taxonomy to classify them into a hierarchical order. This chapter presents a well-characterized taxonomy of different types of HealthGrid and classifies them into four major types, namely BioGrid, MediGrid, PharmaGrid and CareGrid. Each of these HealthGrids possesses dedicated features and functionalities. The proposed taxonomy serves to better understand the realtionship among various HealthGrid types and would lay a basis for future research.


2010 ◽  
Vol 4 (1) ◽  
pp. 181-187 ◽  
Author(s):  
E.M Borycki ◽  
A.W Kushniruk

The purpose of this paper is to argue for an integration of cognitive and socio-technical approaches to assessing the impact of health information systems. Historically, health informatics research has examined the cognitive and socio-technical aspects of health information systems separately. In this paper we argue that evaluations of health information systems should consider aspects related to cognition as well as socio-technical aspects including impact on workflow (i.e. an integrated view). Using examples from the study of technology-induced error in healthcare, we argue for the use of simulations to evaluate the cognitive-socio-technical impacts of health information technology [36]. Implications of clinical simulations and analysis of cognitive-social-technical impacts are discussed within the context of the system development life cycle to improve health information system design, implementation and evaluation.


1998 ◽  
Vol 37 (04/05) ◽  
pp. 518-526 ◽  
Author(s):  
D. Sauquet ◽  
M.-C. Jaulent ◽  
E. Zapletal ◽  
M. Lavril ◽  
P. Degoulet

AbstractRapid development of community health information networks raises the issue of semantic interoperability between distributed and heterogeneous systems. Indeed, operational health information systems originate from heterogeneous teams of independent developers and have to cooperate in order to exchange data and services. A good cooperation is based on a good understanding of the messages exchanged between the systems. The main issue of semantic interoperability is to ensure that the exchange is not only possible but also meaningful. The main objective of this paper is to analyze semantic interoperability from a software engineering point of view. It describes the principles for the design of a semantic mediator (SM) in the framework of a distributed object manager (DOM). The mediator is itself a component that should allow the exchange of messages independently of languages and platforms. The functional architecture of such a SM is detailed. These principles have been partly applied in the context of the HEllOS object-oriented software engineering environment. The resulting service components are presented with their current state of achievement.


2009 ◽  
Vol 18 (01) ◽  
pp. 153-157
Author(s):  
A. Vero ◽  
L. Bessonart ◽  
A. Barbiel ◽  
M. Ferla ◽  
A. Margolis

Summary Objectives Health Information systems training is one of the bottlenecks in clinical systems implementation. In this article, a strategy to massively create and train interdisciplinary coordinating teams is described for a project in Uruguay at FEMI, a non-academic setting which includes 23 health care institutions across the country and a tertiary referral center in Montevideo. Methods A series of educational activities were designed for the local coordinating teams. They included both onsite and online formats, site visits, integrated with some of the project tasks. Results In total, 128 professionals from all the Institutions participated in one or more of the training sessions (onsite and online) and 87 of them accomplished one of the forms of training. Conclusions Massive basic health informatics training was possible in Uruguay through collaboration with academic institutions at the country and regional level. Next steps include an active involvement of nurses in the educational events and planning of massive training of end users.


2020 ◽  
Vol 30 (Suppl 1) ◽  
pp. 193-202
Author(s):  
Karen Wang ◽  
Ian Hambleton ◽  
Erika Linnander ◽  
Luis Marenco ◽  
Saria Hassan ◽  
...  

Precision medicine seeks to leverage technology to improve the health for all individuals. Successful health information systems rely fundamentally on the integra­tion and sharing of data from a range of disparate sources. In many settings, basic infrastructure inequities exist that limit the usefulness of health information systems. We discuss the work of the Yale Transdis­ciplinary Collaborative Center for Health Disparities focused on Precision Medicine, which aims to improve the health of people in the Caribbean and Caribbean diaspora by leveraging precision medicine approaches. We describe a participatory informatics ap­proach to sharing data as a potential mecha­nism to reducing inequities in the existing data infrastructure.Ethn Dis. 2020;30(Suppl 1):193-202; doi:10.18865/ed.30.S1.193


Author(s):  
Sundeep Sahay ◽  
T Sundararaman ◽  
Jørn Braa

Establishment of health information systems has been a central objective of health sector reform in nearly all LMICs over the last two to three decades. Historically, reform processes have taken introduction of health information systems as inhertently strengthening health sector performance. But today it is more appropriate to talk of health sector strengthening as co-evolving with health information systems strengthening, each reinforcing the performance and reform agendas of the other. The need to build synergies is heightened as there are a multitude of global and national health reform processes underway, like those assoicated with the sustainable development goals or with universal health coverage and each of these have expanded informational needs, requiring robust, flexible, and evolving health information systems. An understanding of the challenges faced by efforts at health systems strengthening helps provide meaningful inputs into health information systems design and vice versa. Such an understanding will enrich public health informatics as an academic discipline, as an area of practice, and as a policy domain.


Sign in / Sign up

Export Citation Format

Share Document