Automated Health Services Reprogramming the Doctor

1970 ◽  
Vol 09 (02) ◽  
pp. 116-121 ◽  
Author(s):  
E. Day

The autor surveys the potential impact of modern technology on the practice of preventive and diagnostic medicine. The experience of Strang Clinic in cancer detection during the past three decades is briefly reviewed as a base for the »new look« in clinical services. With the broadening of scope to include all major diseases, and the demand to serve more of the population, new methods of data acquisition and processing are now essential. The paper reviews future goals and the available methods of attaining them.

2021 ◽  
Vol 13 (6) ◽  
pp. 3017
Author(s):  
Jakub Chromčák ◽  
Daša Bačová ◽  
Pavol Pecho ◽  
Anna Seidlová

Hand in hand with the increasing interest in the environment, this work puts the spotlight on ecological stability itself. The Coefficient of Ecological Stability (CES) indicates a chosen region’s stability level that may be calculated using various methodical instructions. For exact CES determination, it is necessary to divide the area of interest correctly into predefined classes and the division quality has a direct impact on the final CES value precision which presents its informative value. For CES calculations in the past, terrestrial measurements and processing were used. Regarding the new methods of spatial data acquisition such as photogrammetry or remote sensing, there comes the question of the usage of these data for secondary purposes, such as for ecology. This articles goal is to test the use of the images taken by an Unmanned Aerial Vehicle (UAV) for CES calculation. The main objective is to highlight the possibility of a UAV to measure CES without terrestrial measurements. The second objective is to compare the actual formulas for CES calculation and to observe the differences between the results from different calculations. Another aim is to show the inconsistency of calculations which lead to legislative unification. The aim is to apply a new method of CES calculation using Geographic Information System (GIS) software and modern methods of data acquisition and to point out the benefits, mainly including the time factor, which is closely related to the terrestrial geodetic measurement, when the CES value is about to be calculated for such a spacious area.


1990 ◽  
Vol 51 (C2) ◽  
pp. C2-939-C2-942 ◽  
Author(s):  
N. DINER ◽  
A. WEILL ◽  
J. Y. COAIL ◽  
J. M. COUDEVILLE

2009 ◽  
Vol 5 (1) ◽  
pp. 32
Author(s):  
Melanie Maytin ◽  
Laurence M Epstein ◽  
◽  

Prior to the introduction of successful intravascular countertraction techniques, options for lead extraction were limited and dedicated tools were non-existent. The significant morbidity and mortality associated with these early extraction techniques limited their application to life-threatening situations such as infection and sepsis. The past 30 years have witnessed significant advances in lead extraction technology, resulting in safer and more efficacious techniques and tools. This evolution occurred out of necessity, similar to the pressure of natural selection weeding out the ineffective and highly morbid techniques while fostering the development of safe, successful and more simple methods. Future developments in lead extraction are likely to focus on new tools that will allow us to provide comprehensive device management and the design of new leads conceived to facilitate future extraction. With the development of these new methods and novel tools, the technique of lead extraction will continue to require operators that are well versed in several methods of extraction. Garnering new skills while remembering the lessons of the past will enable extraction technologies to advance without repeating previous mistakes.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 118
Author(s):  
Jean-Laurent Pouchairet ◽  
Carole Rossi

For the past two decades, many research groups have investigated new methods for reducing the size and cost of safe and arm-fire systems, while also improving their safety and reliability, through batch processing. Simultaneously, micro- and nanotechnology advancements regarding nanothermite materials have enabled the production of a key technological building block: pyrotechnical microsystems (pyroMEMS). This building block simply consists of microscale electric initiators with a thin thermite layer as the ignition charge. This microscale to millimeter-scale addressable pyroMEMS enables the integration of intelligence into centimeter-scale pyrotechnical systems. To illustrate this technological evolution, we hereby present the development of a smart infrared (IR) electronically controllable flare consisting of three distinct components: (1) a controllable pyrotechnical ejection block comprising three independently addressable small-scale propellers, all integrated into a one-piece molded and interconnected device, (2) a terminal function block comprising a structured IR pyrotechnical loaf coupled with a microinitiation stage integrating low-energy addressable pyroMEMS, and (3) a connected, autonomous, STANAG 4187 compliant, electronic sensor arming and firing block.


2021 ◽  
pp. 105971232098304
Author(s):  
R Alexander Bentley ◽  
Joshua Borycz ◽  
Simon Carrignon ◽  
Damian J Ruck ◽  
Michael J O’Brien

The explosion of online knowledge has made knowledge, paradoxically, difficult to find. A web or journal search might retrieve thousands of articles, ranked in a manner that is biased by, for example, popularity or eigenvalue centrality rather than by informed relevance to the complex query. With hundreds of thousands of articles published each year, the dense, tangled thicket of knowledge grows even more entwined. Although natural language processing and new methods of generating knowledge graphs can extract increasingly high-level interpretations from research articles, the results are inevitably biased toward recent, popular, and/or prestigious sources. This is a result of the inherent nature of human social-learning processes. To preserve and even rediscover lost scientific ideas, we employ the theory that scientific progress is punctuated by means of inspired, revolutionary ideas at the origin of new paradigms. Using a brief case example, we suggest how phylogenetic inference might be used to rediscover potentially useful lost discoveries, as a way in which machines could help drive revolutionary science.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yanfei Yang ◽  
Mingzhu Xu ◽  
Aimin Liang ◽  
Yan Yin ◽  
Xin Ma ◽  
...  

AbstractIn this study, a wearable multichannel human magnetocardiogram (MCG) system based on a spin exchange relaxation-free regime (SERF) magnetometer array is developed. The MCG system consists of a magnetically shielded device, a wearable SERF magnetometer array, and a computer for data acquisition and processing. Multichannel MCG signals from a healthy human are successfully recorded simultaneously. Independent component analysis (ICA) and empirical mode decomposition (EMD) are used to denoise MCG data. MCG imaging is realized to visualize the magnetic and current distribution around the heart. The validity of the MCG signals detected by the system is verified by electrocardiogram (ECG) signals obtained at the same position, and similar features and intervals of cardiac signal waveform appear on both MCG and ECG. Experiments show that our wearable MCG system is reliable for detecting MCG signals and can provide cardiac electromagnetic activity imaging.


Sign in / Sign up

Export Citation Format

Share Document