STIMULATION OF FIBRINOLYSIS BY ACTIVATED PROTEIN C (APC)

1987 ◽  
Author(s):  
N J de Four ◽  
R M Bertina ◽  
F Havgrkate

In 1960 Mammen and Seegers reported the discovery of a new protein (autoprothrombin II-A, APC) with both anticoagulant and profibrinolytic activity. They found that APC accelerated clot lysis in vitro and proposed that this was due to a reduction of plasmin - inhibitory activity. Many years later Comp et al (J Clin Inv 68: 1221) reported that the infusion of APC into dogs resulted in an increase in circulating plasminogen activator activity. This observation stimulated more extensive studies of the profibrinolytic effects of APC.In our laboratories we have studied the effect of human APC on clot lysis both in whole blood (human) and in a system of purified human proteins. In these systems 125I-labelled fibrinogen was incorporated in a clot formed after the addition of Jombin (complete clot formation within 5 min) and the subsequent lysis of this clot was followed by measuring the release of I-labelled fibrin degradation products (FDP) into the supernatant. Human t-PA was added to the system to achieve complete lysis of the clot within a few hours.When APC was added to citrated whole blood before clot formation, it was found to accelerate clot lysis in a dose dependent way. This effeg| was specific for APC and dependent on an intact active site, on the presence of protein S (the protein cofactor of APC) and Ca . The presence of APC did not influence the composition of the FDP formed, as analysed by means of SDS-polyacry-1 amide gel electroforesis, and its effect was found to be independent of the presence or absence of a.-antiplasmin.Subsequently we developped a clot lysis system using the purified human proteins of the fibrinolytic system: fibrinogen, FXIII, t-PA, PAI-1 (from human endothelial cells), glu-plasminogen and a -antiplasmin. In this system clot lysis was dependent on the concentrations of plasminogen, -antiplasmin, t-PA and PAI-1, but independent on the thrombin concentration and the presence or absence of phospholipids (purified from human brain). In the absence of PAI-1, no effect of APC on clot lysis was observed. However, in the presence of PAI-1, APC accelerated clot lysis. This effect was independent of the presence or absence of phospholipids and/or protein S and could be explained by the observation that APC can form a complex with PAI-1 (~ 95 kd) and under certain conditions even can convert active PAI-1 (~ 46 kd) into an inactive degradation product (~ 42 kd). However, complex formation is relatively slow anti high PAI-1 concentrations are needed to observe the reaction. The addition of protein S or phospholipids in the presence of Ca did not stimulate complex formation. Therefore, it seems highly unlikely that neutralization of PAI-1 by APC is responsible for the profibrinolytic effect of APC in the whole blood clot lysis.A completely different explanation for the profibrinolytic effect of APC was suggested by the observation that the addition of blood-platelets to the system of purified fibrinolytic components introduced a dependence of the clot lysis rate on the thrombin concentration (decrease in clot lysis at increasing thrombin concentration). This finding opened the possibility that APC stimulated fibrinolysis by reducing the effective thrombin concentration. Subsequent experiments using the whole blood clot lysis system revealed that in the presence of anti-FX antibodies clot lysis was no longer accelerated by APC, while the actual rate of clot lysis depended on the concentration of thrombin added.We like to propose, that in a blood clot lysis system APC most likely accelerates fibrinolysis by reducing the effective thrombin concentration; if at all, neutralization of PAI-1 may play only a minor role.

1988 ◽  
Vol 60 (02) ◽  
pp. 328-333 ◽  
Author(s):  
N J de Fouw ◽  
Y F de Jong ◽  
F Haverkate ◽  
R M Bertina

summaryThe effect of purified human activated protein G (APC) on fibrinolysis was studied using a clot iysis system consisting of purified glu-plasminogen, tissue-type plasminogen activator, plasminogen activator inhibitor (released from endothelial cells or blood platelets), fibrinogen, 125T-fibrinogen and thrombin. All proteins were of human origin.In this system APC could increase fibrinolysis in a dose dependent way, without affecting fibrin formation or fibrin crosslinking. However, this profibrinolytic effect of APC could only be observed when plasminogen activator inhibitor (PAI-l) was present. The effect of APC was completely quenched by pretreatment of APC with anti-protein C IgG or di-isopropylfluorophosphate. Addition of the cofactors of APC:protein S, Ca2+-ions and phospholipid-alone or in combination did not enhance the profibrinolytic effect of APC. These observations indicate that human APC can accelerate in vitro clot lysis by the inactivation of PAI-1 activity. However, the neutralization of PAI-1 by APC is independent of the presence or absence of protein S, phospholipid and Ca2+-ions.


Blood ◽  
1986 ◽  
Vol 67 (4) ◽  
pp. 1189-1192 ◽  
Author(s):  
NJ de Fouw ◽  
F Haverkate ◽  
RM Bertina ◽  
J Koopman ◽  
A van Wijngaarden ◽  
...  

Abstract The effect of purified human activated protein C (APC) and protein S on fibrinolysis was studied by using an in vitro blood clot lysis technique. Blood clots were formed from citrated blood (supplemented with 125I-fibrinogen) by adding thrombin and Ca2+-ions; lysis of the clots was achieved by adding tissue-type plasminogen activator. The release of labeled fibrin degradation products from the clots into the supernatant was followed in time. We clearly demonstrated that APC accelerates whole blood clot lysis in vitro. The effect of APC was completely quenched by antiprotein C IgG, pretreatment of APC with diisopropylfluorophosphate, and preincubation of the blood with antiprotein S IgG. This demonstrates that both the active site of APC and the presence of the cofactor, protein S, are essential for the expression of the profibrinolytic properties. At present, the substrate of APC involved in the regulation of fibrinolysis is not yet known. Analysis of the radiolabeled fibrin degradation products demonstrated that APC had no effect on the fibrin cross-linking capacity of factor XIII.


Blood ◽  
1986 ◽  
Vol 67 (4) ◽  
pp. 1189-1192
Author(s):  
NJ de Fouw ◽  
F Haverkate ◽  
RM Bertina ◽  
J Koopman ◽  
A van Wijngaarden ◽  
...  

The effect of purified human activated protein C (APC) and protein S on fibrinolysis was studied by using an in vitro blood clot lysis technique. Blood clots were formed from citrated blood (supplemented with 125I-fibrinogen) by adding thrombin and Ca2+-ions; lysis of the clots was achieved by adding tissue-type plasminogen activator. The release of labeled fibrin degradation products from the clots into the supernatant was followed in time. We clearly demonstrated that APC accelerates whole blood clot lysis in vitro. The effect of APC was completely quenched by antiprotein C IgG, pretreatment of APC with diisopropylfluorophosphate, and preincubation of the blood with antiprotein S IgG. This demonstrates that both the active site of APC and the presence of the cofactor, protein S, are essential for the expression of the profibrinolytic properties. At present, the substrate of APC involved in the regulation of fibrinolysis is not yet known. Analysis of the radiolabeled fibrin degradation products demonstrated that APC had no effect on the fibrin cross-linking capacity of factor XIII.


1992 ◽  
Vol 20 (3) ◽  
pp. 390-395 ◽  
Author(s):  
Thomas Groth ◽  
Katrin Derdau ◽  
Frank Strietzel ◽  
Frank Foerster ◽  
Hartmut Wolf

Twenty years ago Imai & Nose introduced a whole-blood clotting test for the estimation of haemocompatibility of biomaterials in vitro In our paper a modification of this assay is described and the mechanism of clot formation further elucidated. It was found that neither the inhibition of platelet function nor the removal of platelets from blood significantly changed the clot formation rate on glass and polyvinyl chloride in comparison to the rate tor whole blood. Scanning electron microscopy demonstrated that platelets were not involved in clot formation near the blood/biomaterial interface. Thus, it was concluded that the system of contact activation of the coagulation cascade dominates during clot formation under static conditions. The latter conclusion was supported by the fact that preadsorption of human serum albumin or human fibrinogen onto the glass plates used, decreased the clot formation rate in the same manner.


1998 ◽  
Vol 79 (03) ◽  
pp. 587-590 ◽  
Author(s):  
J. A. Cooper ◽  
D. J. Howarth ◽  
T. W. Meade ◽  
G. J. Miller ◽  
P. K. MacCallum

SummaryImpaired whole blood fibrinolytic activity (FA), measured by the dilute clot lysis time (DCLT), is associated with first episodes of ischaemic heart disease (IHD) in the Northwick Park Heart Study in men, especially under 55 years, and in women. In a community-based study to investigate possible determinants of the DCLT, and therefore to assess which fibrinolytic components might be predictors of first IHD events, we measured fibrinolytic variables in a sub-sample of 150 healthy adults (73 males, 77 females) randomly selected from a single general practice.Most of the variance in DCLT (68% in men, 63% in women) was explained by tissue-type plasminogen activator (t-PA) and plasminogen activator inhibitor type-1 (PAI-1) activities. In multiple regression analysis there was a significant difference in the strength of the association of t-PA activity with DCLT in men compared to women (test for interaction p = 0.05), the association of t-PA activity with DCLT being significant in males but not in females. Plasma PAI-1 activity was strongly associated with DCLT in both sexes. There was no independent association of DCLT with plasma fibrinogen, t-PA antigen, other fibrinolytic inhibitors, body mass index, serum lipids or C-reactive protein.Plasma PAI-1 activity in females and both t-PA and PAI-1 activities in males are the main determinants of whole blood FA measured by DCLT. It is therefore likely that these modulators of the plasma fibrinolytic system are associated with the onset of first clinical episodes of IHD. Elevated levels of t-PA antigen were positively associated with DCLT after adjustment for age and sex and therefore indicate impaired rather than enhanced FA. Further studies of the association of FA with risk of IHD should include not only “global” measures but also assessment of t-PA and PAI-1 activities, particularly as our results suggest that their associations with IHD may differ in men and women.


2017 ◽  
Vol 23 (3) ◽  
pp. 607-617 ◽  
Author(s):  
Albe C. Swanepoel ◽  
Odette Emmerson ◽  
Etheresia Pretorius

AbstractCombined oral contraceptive (COC) use is a risk factor for venous thrombosis (VT) and related to the specific type of progestin used. VT is accompanied by inflammation and pathophysiological clot formation, that includes aberrant erythrocytes and fibrin(ogen) interactions. In this paper, we aim to determine the influence of progesterone and different synthetic progestins found in COCs on the viscoelasticity of whole blood clots, as well as erythrocyte morphology and membrane ultrastructure, in an in vitro laboratory study. Thromboelastography (TEG), light microscopy, and scanning electron microscopy were our chosen methods. Our results point out that progestins influence the rate of whole blood clot formation. Alterations to erythrocyte morphology and membrane ultrastructure suggest the presence of eryptosis. We also note increased rouleaux formation, erythrocyte aggregation, and spontaneous fibrin formation in whole blood which may explain the increased risk of VT associated with COC use. Although not all COC users will experience a thrombotic event, individuals with a thrombotic predisposition, due to inflammatory or hematological illness, should be closely monitored to prevent pathological thrombosis.


1994 ◽  
Vol 8 ◽  
pp. 43
Author(s):  
M. Colucci ◽  
S. Scopece ◽  
A. Gelato ◽  
L.G. Cavallo ◽  
N. Semeraro

1996 ◽  
Vol 2 (1) ◽  
pp. 64-68
Author(s):  
Raul Altman ◽  
Alejandra Scazziota ◽  
Jorge Rouvier

Vascular endothelial cells have thrombosis- prevention properties through the release of some fibri nolytic factors. This capacity of endothelium was studied using the venous occlusion test (VOT) and measuring proteins released during stasis. Blood samples were col lected before and after 10 and 20 min VOT in tubes con taining sodium citrate at pH 7.0 or 4.3. A significant shortening of the euglobulin clot lysis time (ECLT) was obtained 10 and 20 min after VOT in plasma collected in citrate pH 7.0 or 4.3. No statistical difference was noted between results obtained 10 and 20 minutes after VOT. The shortening was related to the increase of tissue plas minogen activator (t-PA) released during VOT. No differ ence was detected in the concentration of tissue plasmin ogen activator inhibitor 1 (PAI-1), but PAI-1 activity mea sured in plasma from blood collected in citrate pH 7.0 decreased progressively from 10.8 ± 9.2 arbitrary units (AU)/ml to 3.76 ± 4.5 AU/ml and 0.8 ± 1.02 AU/ml (p < 0.001) after 10 and 20 min, respectively, of stasis. When the PAI-1 activity was determined in blood collected in citrate pH 4.3 for preventing in vitro complexing of PAI-1 and t-PA, results were different: PAI-1 activity decreased from a basal value of 29.2 ± 15.3 AU/ml to 24.9 ± 12.2 ( p = NS) and 18.7 ± 11.5; p < 0.02) 10 and 20 min after VOT. As result of fibrinolytic activation, other factors were modified: increase of plasminogen activators, de crease of plasminogen, and increase of D-dimer. Fibrin ogen, fibronectin, protein C, protein S, von Willebrand factor, and tissue factor pathway inhibitor concentration remained unchanged after VOT. According to our find ings, VOT can be performed with a stasis of 10 min. Good responders are related to the endothelial capacity for re leasing t-PA and urokinase-type PA (u-PA) and defined as those with an ECLT of <60 min after 10 min VOT when blood was collected in sodium citrate pH 7.0.


1990 ◽  
Vol 59 (1) ◽  
pp. 171-181 ◽  
Author(s):  
Mark B. Kahn ◽  
Sharon Palmer ◽  
Richard A. Marlar ◽  
Louis Fink

2002 ◽  
Vol 96 (Sup 2) ◽  
pp. A534
Author(s):  
Jun Kawasaki ◽  
Kenichi A. Tanaka ◽  
Tohru Wada ◽  
Katsuo Terui ◽  
Hideki Miyao

Sign in / Sign up

Export Citation Format

Share Document