THE ROLE OF A 3-0 SULFO GROUP IN THE GLUCOSAMINE RESIDUE OF A SYNTHETIC OLIGOSACCHARIDE FOR THE DETERMINATION OF ANTITHROMBOTIC ACTIONS

1987 ◽  
Author(s):  
J M Walenga ◽  
J Fareed ◽  
M Petitou ◽  
J C Lormeau ◽  
M Samama ◽  
...  

We have previously reported on the antithromboticaction of a chemically synthesized heparin pentasaccharide which exhibits high affinity to anti thrombinIII and sole anti-factor Xa activity. In order to investigate the relative importance of the 3-0 sulfo group of this pentasaccharide, we evaluated the in vitro and in vivo antithrombotic activity of a synthetic pentasccharide devoid of the sulfo group at the third position of the glucosamine residue. In amidolytic and clot-based assays the 3-0 de- sulfated pentasaccharide (3-0-DP) failed to exhibit any antifactor Xa actions at concentrations <100 ug/ml in humanor rabbit plasmas, whereas pentasaccharide showed strong factor Xa inhibition at 1.0 ug/ml IK-=3.2x10 M)and at 10.0 ug/ml in rabbit plasma (K.=9.0×10™7 M). Using a rabbit stasis thrombosis model in which thrombosis was induce by human serum or an activated pro-thrombin complex concentrate, 3-0-DP failed to produce any antithrombotic action in acute intravenous regimens at dosages up to 200 ug/kg. In these two models, pentasaccharide produced >80% inhibition of induced thrombosis. These studies demonstrate the critical importance of the 3-0 sulfo group in this heparin pentasaccharide for the determination of antithrombotic activity, and that in this type of oligosaccharide, anti-factor Xa activity is responsible for producing the antithrombotic effect.

1987 ◽  
Author(s):  
J M Walenga ◽  
J Fareed ◽  
M Petitou ◽  
J C Lormeau ◽  
M Samama ◽  
...  

The synthetic pentasccharide, representing the critical sequence required in heparin for binding to antithrombin III, provides a unique tool to study the question of whether an agent solely capable of inhibiting factor Xa but devoid of anti-factor Ila activity in vitro, has the capacity to produce an antithrombotic effect in vivo. We have previously demonstrated in a rabbit stasis thrombosis model using a human serum challenge, a significant antithrombotic effect of the pentasaccharide (Walenga et al., Thromb Res 43:243, 1986). To extend and confirm these studies, four modifications of the stasis thrombosis model were developed using more specified induction sites of thrombosis. The following thrombogenic challenges were selected: monkey brain thromboplastin, an activated prothrombin complex concentrate, a non-activated prothrombin complex concentrate administered simultaneously with Russell's viper venom, and factor Xa. Dose-dependent antithrombotic responses were obtained in all four systems with ED50 values between 25-43 ug/kg for pentasaccharide as compared to 16-47 ug/kg for heparin. Complete inhibition of induced thrombosis was obtained in all four systems for pentasaccharide. Ex vivo analysis revealed expected anti-factor Xa levels but no anti-factor IIa activity. It was also shown that pentasaccharide in the rabbit was capable of inhibiting the generation of thrombin without directly inhibiting formed thrombin. It is concluded that an oligosaccharide with high anti-factor Xa activity, devoid of anti-factor Ila activity, is capable of inhibiting thrombosis induced in rabbit stasis models, but that higher dosages than heparin are required for this effect-in terms of anti-factor Xa activity.


1987 ◽  
Vol 26 (01) ◽  
pp. 1-6 ◽  
Author(s):  
S. Selvaraj ◽  
M. R. Suresh ◽  
G. McLean ◽  
D. Willans ◽  
C. Turner ◽  
...  

The role of glycoconjugates in tumor cell differentiation has been well documented. We have examined the expression of the two anomers of the Thomsen-Friedenreich antigen on the surface of human, canine and murine tumor cell membranes both in vitro and in vivo. This has been accomplished through the synthesis of the disaccharide terminal residues in both a and ß configuration. Both entities were used to generate murine monoclonal antibodies which recognized the carbohydrate determinants. The determination of fine specificities of these antibodies was effected by means of cellular uptake, immunohistopathology and immunoscintigraphy. Examination of pathological specimens of human and canine tumor tissue indicated that the expressed antigen was in the β configuration. More than 89% of all human carcinomas tested expressed the antigen in the above anomeric form. The combination of synthetic antigens and monoclonal antibodies raised specifically against them provide us with invaluable tools for the study of tumor marker expression in humans and their respective animal tumor models.


1990 ◽  
Vol 63 (02) ◽  
pp. 220-223 ◽  
Author(s):  
J Hauptmann ◽  
B Kaiser ◽  
G Nowak ◽  
J Stürzebecher ◽  
F Markwardt

SummaryThe anticoagulant effect of selected synthetic inhibitors of thrombin and factor Xa was studied in vitro in commonly used clotting assays. The concentrations of the compounds doubling the clotting time in the various assays were mainly dependent on their thrombin inhibitory activity. Factor Xa inhibitors were somewhat more effective in prolonging the prothrombin time compared to the activated partial thromboplastin time, whereas the opposite was true of thrombin inhibitors.In vivo, in a venous stasis thrombosis model and a thromboplastin-induced microthrombosis model in rats the thrombin inhibitors were effective antithrombotically whereas factor Xa inhibitors of numerically similar IQ value for the respective enzyme were not effective at equimolar dosageThe results are discussed in the light of the different prelequisiles and conditions for inhibition of thrombin and factor Xa in the course of blood clotting.


1997 ◽  
Vol 78 (02) ◽  
pp. 864-870 ◽  
Author(s):  
Hideki Nagase ◽  
Kei-ichi Enjyoji ◽  
Yu-ichi Kamikubo ◽  
Keiko T Kitazato ◽  
Kenji Kitazato ◽  
...  

SummaryDepolymerized holothurian glycosaminoglycan (DHG) is a glycosaminoglycan extracted from the sea cucumber Stichopus japonicusSelenka. In previous studies, we demonstrated that DHG has antithrombotic and anticoagulant activities that are distinguishable from those of heparin and dermatan sulfate. In the present study, we examined the effect of DHG on the tissue factor pathway inhibitor (TFPI), which inhibits the initial reaction of the tissue factor (TF)-mediated coagulation pathway. We first examined the effect of DHG on factor Xa inhibition by TFPI and the inhibition of TF-factor Vila by TFPI-factor Xa in in vitro experiments using human purified proteins. DHG increased the rate of factor Xa inhibition by TFPI, which was abolished either with a synthetic C-terminal peptide or with a synthetic K3 domain peptide of TFPI. In contrast, DHG reduced the rate of TF-factor Vila inhibition by TFPI-factor Xa. Therefore, the effect of DHG on in vitroactivity of TFPI appears to be contradictory. We then examined the effect of DHG on TFPI in cynomolgus monkeys and compared it with that of unfractionated heparin. DHG induced an increase in the circulating level of free-form TFPI in plasma about 20-fold when administered i.v. at 1 mg/kg. The prothrombin time (PT) in monkey plasma after DHG administration was longer than that estimated from the plasma concentrations of DHG. Therefore, free-form TFPI released by DHG seems to play an additive role in the anticoagulant mechanisms of DHG through the extrinsic pathway in vivo. From the results shown in the present work and in previous studies, we conclude that DHG shows anticoagulant activity at various stages of coagulation reactions, i.e., by inhibiting the initial reaction of the extrinsic pathway, by inhibiting the intrinsic Xase, and by inhibiting thrombin.


2021 ◽  
pp. 1-9
Author(s):  
Etsuo Niki

Reactive oxygen and nitrogen species have been implicated in the onset and progression of various diseases and the role of antioxidants in the maintenance of health and prevention of diseases has received much attention. The action and effect of antioxidants have been studied extensively under different reaction conditions in multiple media. The antioxidant effects are determined by many factors. This review aims to discuss several important issues that should be considered for determination of experimental conditions and interpretation of experimental results in order to understand the beneficial effects and limit of antioxidants against detrimental oxidation of biological molecules. Emphasis was laid on cell culture experiments and effects of diversity of multiple oxidants on antioxidant efficacy.


Author(s):  
Mihir K Patel ◽  
Kiranj K. Chaudagar ◽  
Anita A. Mehta

Objective: Although recent advances in the treatment of congestive heart disease, mortality among patients’ remains a questionable remark. Therefore, we evaluated the role of capsaicin on in vitro and ex vivo platelet aggregation induced by Adenosine Di-Phosphate (ADP) as well as in in vivo thrombosis models and role of NO, KATP was also identified in the capsaicin-induced anti-platelet animal model as well as in vivo model of arterial thrombosis.Methods: According to body weight wistar rats were divided into five groups. Group I and Group II was treated with saline and capsaicin (3 mg/kg, i. v), while animals from Group III were treated with N(ω)-nitro-L-arginine methyl ester (L-NAME) (30 mg/kg, i. v) 30 min before administration of capsaicin (3 mg/kg, i. v). Group IV animals were treated with glibenclamide (10 mg/kg,i. v) 30 min before administration of capsaicin (3 mg/kg, i. v). Group V was considered as a positive control and administered clopidogrel (30 mg/kg, p. o). Animals were subjected for in vitro, ex-vivo platelet aggregation assay. ADP (30µM) was utilized as an aggregating agent in these experiments. After these assays; animals of each group were subjected for subaqueous tail bleeding time in a rat model and FeCl3-induced arterial thrombosis model in rats.Results: In ADP-induced in vitro platelet aggregation, a significant reduction in % platelet aggregation was observed at 50µM (64.35±4.641) and 100µM (52.72±4.192) concentration of capsaicin as compared to vehicle control (85.82±3.716). Capsaicin (3 mg/kg, i. v) also showed a significant reduction (49.53±4.075) in ex-vivo ADP-induced platelet aggregation as compared to vehicle control (89.38±2.057). In FeCl3 induced arterial thrombosis model, Capsaicin (3 mg/kg, i. v) exhibited an increase in time to occlusion in this rodent model and presence of the L-NAME and glibenclamide had inhibited the activity of capsaicin.Conclusion: In our study, capsaicin (50 µM, 100µM) exhibited potent anti-platelet activity in ADP-induced platelet aggregation, similarly capsaicin exhibited significant anti-platelet action in the ex-vivo study. Moreover, the presence of L-NAME and glibenclamide inhibited the anti-thrombotic and anti-platelet action of capsaicin. Therefore, it was concluded that NO and KATP may be involved in the anti-thrombotic action of capsaicin.


1957 ◽  
Vol 189 (2) ◽  
pp. 301-306 ◽  
Author(s):  
Nicholas M. Papadopoulos ◽  
Joseph H. Roe

The role of phosphorylation in the absorption of fructose from the intestinal tract of the fasted rat by in vitro and in vivo techniques was studied. The authors' method for the determination of fructose phosphate esters was used and these esters were identified by paper chromatography and copper reduction techniques. Buffered homogenate of intestinal mucosa of a fasted rat, mixed with ATP, MgCl2, KF and fructose, when incubated at 30°, showed the formation of fructose-6-phosphate and fructose-1, 6-diphosphate at a rate that corresponded to the decrease in free fructose. The same homogenate, mixed with fructose-1, 6-diphosphate and incubated at 37°, showed the formation of fructose-6-phosphate and free fructose at a rate that corresponded to the decrease in the concentration of the diphosphate ester. Following intraduodenal injection of fructose solution into anesthetized fasted rats, homogenates of the intestinal mucosa showed the presence of fructose-6-phosphate and fructose-1, 6-diphosphate in average concentrations 14 and 5 times, respectively, those found in control muocsa, also concentrations of free fructose in the blood of the portal vein up to 24.6 mg % were observed. The large increase in fructose phosphate esters in the intestinal mucosa, observed after fructose administration, suggests that phosphorylation of sugars in absorption serves a more extensive function than to initiate glycolysis for the normal metabolism of the mucosal cells. The data obtained suggest that phosphorylation and dephosphorylation are functional steps in the absorption of fructose from the alimentary tract of the rat.


1987 ◽  
Author(s):  
R A Zimmerman ◽  
C T Rieger ◽  
K Hübner ◽  
C W Harenber ◽  
W Kübler

Low molecular weight heparin induces a higher anti factor Xa (a-Xa) and a lower antithrombin activity in plasma in comparison to conventional heparin. From this constellation a more pronounced antithrombotic effect and a minor incidence of bleeding Complications has been suggested.Therefore the antithrombotic activity of heparins was studied in a standardized experimental thrombosis model in rabbits. Three low molecular weight heparins with a mean molecular weight of 4.200 (heparin I),4.000 (heparin II),4.600 Dalton (heparin III) and standard heparin were tested at different dosages in 120 experiments. In the first series the dose of 60 anti Xa units (a-Xa U) given initially and 60 a-Xa U/kg/h induced a reduction of the thrombus size by 40 % (heparin I),37 % (heparin II) and 53 % (heparin III) and a prolongation of the aPTT to 45 (heparin I),66 (heparin II) and 79 sec (heparin III). The a-Xa activity was minor than 0.1 U/ml. In the second series heparins were given to aim at an a-Xa activity of 0.2-0.3 U/ml. Thereby the thrombus formation could be reduced by 84 % (heparin I), 62 % (heparin II) and 39 % (heparin III). aPTT and a-Xa activity were measured at 65.5 sec and 0.22 a-Xa U/ml (heparin I),67.3 sec and 0.3 a-Xa U/ml (heparin II) and 67.5 and 0.31 a-Xa U/ml (heparin III),respectively. In the third series the increase of the a-Xa activity to more than 0.3 U/ml showed no further reduction of the thrombus formation by heparin I, while heparins II and III already at this level reachedthe antithrombotic activity of heparin I.Our data on three different low molecular weight heparins demonstrate that already a heparin level ranging at a minimal a-Xa activity induces a clear and statistically significant antithrombotic effect. A higher heparin dosage with higher a-Xa activity increases the antithrombitic effect. At a level of 0.2-0.3 a-Xa U/ml an obvious and maximum effect could be reached, but the further elevation of the a-Xa activity produced no further antithrombotic action.


Author(s):  
Soo Hyun Lee ◽  
Wonhwa Lee ◽  
Nguyen Thi Ha ◽  
Il Soo Um ◽  
Jong-Sup Bae ◽  
...  

Thrombin (factor IIa) and factor Xa (FXa) are key enzymes at the junction of the intrinsic and extrinsic coagulation pathways and are the most attractive pharmacological targets for the development of novel anticoagulants. Twenty non-amidino N2-thiophencarbonyl- and N2-tosyl anthranilamides 1-20 and six amidino N2-thiophencarbonyl- and N2-tosylanthranilamides 21-26 were synthesized and evaluated prothrombin time (PT) and activated partial thromboplastin time (aPTT) using human plasma at concentration 30 &mu;g/mL in vitro. From these results, compounds 5, 9, and 21-23 were selected to study the further antithrombotic activity. The anticoagulant properties of 5, 9, and 21-23 significantly exhibited a concentration-dependent prolongation of in vitro PT and aPTT, in vivo bleeding time, and ex vivo clotting time. These compounds concentration-dependently inhibited the activities of thrombin and FXa and inhibited the generation of thrombin and FXa in human endothelial cells. In addition, data showed that 5, 9, and 21-23 significantly inhibited thrombin catalyzed fibrin polymerization and mouse platelet aggregation and inhibited platelet aggregation induced U46619 in vitro and ex vivo. N-(3'-Amidinophenyl)-2-((thiophen-2''-yl)carbonyl amino)benzamide (21) was most active.


2007 ◽  
Vol 98 (11) ◽  
pp. 1072-1080 ◽  
Author(s):  
Miroslava Pozgajova ◽  
Judith Cosemans ◽  
Imke Munnix ◽  
Beate Eckes ◽  
Bernhard Nieswandt ◽  
...  

SummaryPlatelets stably interact with collagen via glycoprotein (GP)VI and α2β1 integrin. With α2-null mice, we investigated the role of α2β1 in thrombus formation and stability in vivo and in vitro. Using a FeCl3-induced thrombosis model, in arteries from α2-null mice smaller thrombi were formed with more embolization compared to vessels from wild-type mice. Aspirin treatment of wild-type mice causes similar effects, while the thromboxane A2 analogue U46619 was borderline effective in suppressing the embolisation in α2-null mice. In vitro, perfusion of α2-null blood over collagen resulted in formation of thrombi that were smaller and looser in appearance, regardless of the presence or absence of coagulation. Aspirin treatment or blockage of thromboxane receptors provoked embolus formation in wildtype blood, while U46619 normalized thrombus formation in blood from α2-null mice. We conclude that integrin α2β1 plays a role in stabilizing murine thrombi, likely by enhancing GPVI activation and thromboxane A2 release. The increased embolization in α2-null mice may argue against the use of α2β1 integrin inhibitors for antithrombotic therapy.


Sign in / Sign up

Export Citation Format

Share Document