thromboxane a2 analogue
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 3)

H-INDEX

16
(FIVE YEARS 0)

2020 ◽  
Vol 21 (21) ◽  
pp. 8239
Author(s):  
Anastasia Kyselova ◽  
Mauro Siragusa ◽  
Julian Anthes ◽  
Fiorella Andrea Solari ◽  
Stefan Loroch ◽  
...  

Diabetes is associated with platelet hyper-reactivity and enhanced risk of thrombosis development. Here we compared protein expression in platelets from healthy donors and diabetic patients to identify differentially expressed proteins and their possible function in platelet activation. Mass spectrometry analyses identified cyclin Y (CCNY) in platelets and its reduced expression in platelets from diabetic patients, a phenomenon that could be attributed to the increased activity of calpains. To determine the role of CCNY in platelets, mice globally lacking the protein were studied. CCNY-/- mice demonstrated lower numbers of circulating platelets but platelet responsiveness to thrombin and a thromboxane A2 analogue were comparable with that of wild-type mice, as was agonist-induced α and dense granule secretion. CCNY-deficient platelets demonstrated enhanced adhesion to fibronectin and collagen as well as an attenuated spreading and clot retraction, indicating an alteration in “outside in” integrin signalling. This phenotype was accompanied by a significant reduction in the agonist-induced tyrosine phosphorylation of β3 integrin. Taken together we have shown that CCNY is present in anucleated platelets where it is involved in the regulation of integrin-mediated outside in signalling associated with thrombin stimulation.


2007 ◽  
Vol 98 (11) ◽  
pp. 1072-1080 ◽  
Author(s):  
Miroslava Pozgajova ◽  
Judith Cosemans ◽  
Imke Munnix ◽  
Beate Eckes ◽  
Bernhard Nieswandt ◽  
...  

SummaryPlatelets stably interact with collagen via glycoprotein (GP)VI and α2β1 integrin. With α2-null mice, we investigated the role of α2β1 in thrombus formation and stability in vivo and in vitro. Using a FeCl3-induced thrombosis model, in arteries from α2-null mice smaller thrombi were formed with more embolization compared to vessels from wild-type mice. Aspirin treatment of wild-type mice causes similar effects, while the thromboxane A2 analogue U46619 was borderline effective in suppressing the embolisation in α2-null mice. In vitro, perfusion of α2-null blood over collagen resulted in formation of thrombi that were smaller and looser in appearance, regardless of the presence or absence of coagulation. Aspirin treatment or blockage of thromboxane receptors provoked embolus formation in wildtype blood, while U46619 normalized thrombus formation in blood from α2-null mice. We conclude that integrin α2β1 plays a role in stabilizing murine thrombi, likely by enhancing GPVI activation and thromboxane A2 release. The increased embolization in α2-null mice may argue against the use of α2β1 integrin inhibitors for antithrombotic therapy.


Blood ◽  
2001 ◽  
Vol 98 (6) ◽  
pp. 1942-1948 ◽  
Author(s):  
Guillaume Monneret ◽  
Sylvie Gravel ◽  
Michael Diamond ◽  
Joshua Rokach ◽  
William S. Powell

Abstract Prostaglandin D2 (PGD2) is released following exposure of asthmatics to allergen and acts via the adenylyl cyclase–coupled receptor for PGD2 (DP receptor). In this study, it is reported that human eosinophils possess this receptor, which would be expected to inhibit their activation. In contrast, it was found that prostaglandin D2 is a potent stimulator of eosinophil chemotaxis, actin polymerization, CD11b expression, and L-selectin shedding. These responses are specific for eosinophils, as neutrophils display little or no response to prostaglandin D2. They were not due to interaction with receptors for other prostanoids, as prostaglandins E2 and F2α, U46619 (a thromboxane A2 analogue), and carbaprostacyclin (a prostacyclin analogue) displayed little or no activity. Furthermore, they were not shared by the selective DP receptor agonist BW245C and were not prevented by the selective DP receptor antagonist BWA868C, indicating that they were not mediated by DP receptors. In contrast, the prostaglandin D2 metabolite 13,14-dihydro-15-oxoprostaglandin D2 induced eosinophil activation but did not stimulate DP receptor–mediated adenosine 3′,5′–cyclic monophosphate (cAMP) formation. These results indicate that in addition to the classic inhibitory DP1 receptor, eosinophils possess a second, novel DP2 receptor that is associated with PGD2-induced cell activation. These 2 receptors appear to interact to regulate eosinophil responses to PGD2, as blockade of DP1 receptor–mediated cAMP production by BWA868C resulted in enhanced DP2receptor–mediated stimulation of CD11b expression. The balance between DP1 and DP2 receptors could determine the degree to which prostaglandin D2 can activate eosinophils and may play a role in eosinophil recruitment in asthma.


Sign in / Sign up

Export Citation Format

Share Document