THE LUPUS ANTICOAGULANT DOES NOT INHIBIT THE RELEASE OF PROSTACYCLIN FROM HUMAN ENDOTHELIAL CELLS

1987 ◽  
Author(s):  
W Petraiuolo ◽  
E Bovill ◽  
J Hoak

Decreased endothelial cell production of prostacyclin (PGI2) in response to the lupus anticoagulant has been previously demonstrated, and postulated to have a causal relationship to the thrombotic events associated with the lupus anticoagulant. Five patients who exhibited the anticoagulant were studied in an effort to determine if a relationship exists between exposure of endothelial cells to the lupus anticoagulant and decreased production of prostacyclin (PGI2). Human endothelial cells derived from human umbilical vein grown in culture were exposed to IgG fractions of patient plasmas containing the lupus anticoagulant. The amount of PGI2 released was determined by radioimmunoassay for 6-keto-PGF-l-alpha. The average PGI2 release in the controls was 20.6 picomol/500,000 endothelial cells, whereas those cells exposed to the lupus anticoagulant had a range of 25 to 114 picmol/500,000 cells. We were unable to demonstrate inhibition of the release of PGI2 by human endothelial cells, following exposure to the lupus anticoagulant.(Supported by NIH Grant HL 33723-2 and a Specialized Center of Research in Thrombosis Award HL 35058-01 from the National Heart, Lung and Blood Institute.)

1982 ◽  
Vol 93 (2) ◽  
pp. 343-348 ◽  
Author(s):  
D F Mosher ◽  
M J Doyle ◽  
E A Jaffe

Thrombospondin, the major glycoprotein released from alpha-granules of thrombin-stimulated platelets, is a disulfide-bonded trimer of 160 kilodalton subunits and apparently functions as a platelet lectin. Because cultured human umbilical vein endothelial cells synthesize and secrete a glycoprotein (GP-160) which is a disulfide-bonded multimer of 160 kdalton subunits, the possibility that GP-160 is thrombospondin was investigated. Tritiated GP-160 could be immunoisolated from [3H]leucine-labeled endothelial cell postculture medium using a rabbit antiserum to human platelet thrombospondin. Thrombospondin and GP-160 comigrated in two different two-dimensional electrophoretic systems. Both proteins are disulfide-bonded trimers of acidic 160-kdalton subunits. A competitive radioimmunoassay for binding of 125I-thrombospondin to the rabbit antibodies indicated that 49 micrograms of thrombospondin antigen per 10(6) confluent endothelial cells accumulated in postculture medium over 24 h. Thus, endothelial cells secrete large amounts of a glycoprotein that is identical or very similar to platelet thrombospondin.


2002 ◽  
Vol 103 (1) ◽  
pp. 53-57 ◽  
Author(s):  
Fortunato SCALERA ◽  
Tina FISCHER ◽  
Dietmar SCHLEMBACH ◽  
Ernst BEINDER

This study was conducted to compare the effects of serum from healthy pregnant women and that from pregnant women with pre-eclampsia on oxidative stress in endothelial cells in culture. Human umbilical vein endothelial cells (HUVECs) were incubated with serum from 18 pre-eclamptic, 18 healthy pregnant and 18 healthy non-pregnant women for 24h. The levels of reduced glutathione (GSH) and lipid peroxides (LPOs) were measured in endothelial cell lysates. Measurement of malondialdehyde in combination with 4-hydroxyalkenals has been used as an indicator of LPOs. Serum from healthy pregnant women decreased significantly the LPO content in HUVECs in comparison with serum from pre-eclamptic women and healthy non-pregnant women (30.7±6.6 compared with 39.3±10.9 and 41.0±12.7pmol/mg of protein respectively; P<0.003 and P<0.01 respectively). No differences in GSH content between the three groups (18.3±2.1nmol/mg of protein for healthy pregnant, 19.2±3.3nmol/mg for pre-eclamptic and 18.3±2.0nmol/mg for healthy non-pregnant women) were found. Thus serum from normal pregnant women contains a factor(s) that decreases oxidative stress in human endothelial cells. This mechanism might be altered in pre-eclampsia.


1987 ◽  
Author(s):  
O BOUTHERIN-FALSON ◽  
N BLAES

Prostacyclin (PGI2) is a major product of arachidonic acid metabolism in vascular endothelial cells. In addition to the role of exogenous agents, its production could be modulated by culture conditions : proliferative state, medium renewal, subcultivation... The use of endothelial cell growth factor (ECGF) associated with heparin has been shown to improve human endothelial cell proliferation. Here we report that human umbilical vein endothelial cells (HUVEC) grown in that medium produce less prostacyclin than without growth factor.HUVEC were cultured in RPMI-199 1:1 + 20% fetal calf serum, added or not with ECGF (Bovine hypothalamus extract BTI Cambridge, 24 ug/ml) and heparin (from porcine intestinal mucosa, Signa, 90 ug/ml). After 4 days in culture, medium was removed and replaced by Tyrode Hepes buffer and basal production was measured after 20 min. Cells were then submitted to 5 min thrombin to assess PGI2 production in stimulated conditions. PGI2 production was estimated by specific radioimmunoassay for 6 keto PGFjalpha. For each point, cell number in the culture was counted after Trypsin EDTA treatment. In the present study, cells grown in ECGF-heparin medium produce lower amount of PGI2, compared to heparin or control medium. This result was observed in both basal and stimulated conditions. For each medium (ECGF-heparin, heparin, control), correlations between PGI2 production per cell and log cell density were shown to be significantly negative.These observations suggest that ECGF effect on PGI2 production could be a consequence of its growth factor activity, notably by the fact that it leads to an endothelial monolayer made of more numerous cells. Since it is now suggested by a number of clinical observations that PGI2 is rather produced in pathological conditions, culture models showing a weak production of PGI2 appear in that connection doser to the physiological conditions.


1988 ◽  
Vol 255 (1) ◽  
pp. 179-184 ◽  
Author(s):  
T J Hallam ◽  
R Jacob ◽  
J E Merritt

Human umbilical-vein endothelial cells stimulated with thrombin or histamine show an increase in [Ca2+]i (cytoplasmic free calcium concn.) that is maintained well above the basal pre-stimulated value as long as agonist and a source of extracellular Ca2+ are present. These results provide circumstantial evidence that agonists stimulate influx of Ca2+ across the plasma membrane and into the cytoplasm. Here, we have used Mn2+ as the extracellular bivalent cation which can bind to the fluorescent Ca2+ indicator fura-2 to quench its fluorescence completely. Human umbilical-vein endothelial cells were loaded with fura-2 and, in the presence of extracellular Mn2+, thrombin and histamine were shown to cause quenching of the intracellular dye. This result demonstrates conclusively that agonists can stimulate the influx of bivalent cations. Stimulated discharge of Ca2+ from intracellular stores and influx of Mn2+ were temporally resolved in the same cells to show that release of Ca2+ from intracellular stores clearly precedes influx. Influx of Mn2+ was also demonstrated when extracellular Mn2+ was added after agonist at a time when [Ca2+]i had fallen back to the basal value, showing that influx is not dependent on elevated [Ca2+]i.


1993 ◽  
Vol 265 (1) ◽  
pp. H131-H138 ◽  
Author(s):  
M. F. Ethier ◽  
V. Chander ◽  
J. G. Dobson

The effect of adenosine on proliferation of human endothelial cells was investigated by adding adenosine to the medium of cultures derived from human umbilical veins. Cell counts on cultures grown in 10 microM adenosine for 4–7 days were 41–53% greater than counts from control cultures. In contrast, 10 microM adenosine had no effect on growth of a human fibroblast cell strain (IMR-90). Neither inosine nor 2',5'-dideoxyadenosine influenced endothelial cell growth at concentrations of 0.1 or 10 microM. Addition of adenosine deaminase abolished the proliferative effect of added adenosine and inhibited proliferation by 16% in control cultures, suggesting that endogenous adenosine may enhance proliferation in culture. The adenosine receptor antagonist, 8-phenyltheophylline, at 0.1 and 1.0 microM blocked the enhanced proliferation caused by 10 microM adenosine. Addition of 10 microM adenosine enhanced DNA synthesis in endothelial cell cultures as indicated by an increased incorporation of [3H]thymidine into acid-insoluble cell material. The results indicate that addition of physiological concentrations of adenosine to human umbilical vein endothelial cell cultures stimulates proliferation, possibly via a surface receptor, and suggest that adenosine may be a factor for human endothelial cell growth and possibly angiogenesis.


2003 ◽  
Vol 161 (3) ◽  
pp. 641-651 ◽  
Author(s):  
Gediminas Cepinskas ◽  
Jurate Savickiene ◽  
Carmen V. Ionescu ◽  
Peter R. Kvietys

During the systemic inflammatory response, circulating cytokines interact with the vascular endothelium, resulting in activation and nuclear accumulation of the nuclear transcription factor, nuclear factor kappa B (NFκB). In turn, NFκB transactivates relevant proinflammatory genes, resulting in an amplification of the inflammatory response. Because this scenario is potentially detrimental to the host, mechanisms exist to limit this amplification. Using an in vitro system that mimics the vascular–interstitial interface during inflammation (cell culture inserts), we provide evidence for the existence of a novel negative feedback mechanism on NFκB activity. We show that the interleukin 1β–induced accumulation of nuclear NFκB in human umbilical vein endothelial cell monolayers is dramatically reduced when polymorphonuclear leukocytes (PMN) are allowed to migrate across these monolayers. This effect does not appear to be due to PMN-derived elastase or nitric oxide. Fixed PMN (adhere but do not migrate) did not affect nuclear NFκB. Furthermore, cross-linking of platelet-endothelial cell adhesion molecule-1 (PECAM-1), but not intercellular adhesion molecule-1, reduces human umbilical vein endothelial cell nuclear NFκB induced by interleukin 1β. Finally, interaction of PMN with PECAM-1–deficient endothelial cells does not reduce nuclear NFκB. These observations indicate that engagement of PECAM-1 by emigrating PMN is a pivotal event in this negative feedback on NFκB activity.


RSC Advances ◽  
2015 ◽  
Vol 5 (54) ◽  
pp. 43552-43562 ◽  
Author(s):  
Satish N. Nadig ◽  
Suraj K. Dixit ◽  
Natalie Levey ◽  
Scott Esckilsen ◽  
Kayla Miller ◽  
...  

Targeted micelles containing rapamycin (TRaM) suppressed the immune response of IL-8 in oxidatively stressed human umbilical vein endothelial cellsin vitro(a) and accumulated in aorta grafts for transplantation after 6 hours in cold perfusion solution (b).


Sign in / Sign up

Export Citation Format

Share Document