scholarly journals Comparison of Tissue Factor Pathway in Human Umbilical Vein and Adult Saphenous Vein Endothelial Cells: Implications for Newborn Hemostasis and for Laboratory Models of Endothelial Cell Function

1999 ◽  
Vol 46 (6) ◽  
pp. 742-742 ◽  
Author(s):  
Eric F Grabowski ◽  
Christine A Carter ◽  
Julie R Ingelfinger ◽  
Olga Tsukurov ◽  
Nancy Conroy ◽  
...  
2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Qi Sun ◽  
Dongcao Lv ◽  
Qiulian Zhou ◽  
Yihua Bei ◽  
Junjie Xiao

MicroRNAs (miRNAs, miRs), endogenous small non-coding RNA, have been shown to act as essential regulators in angiogenesis which plays important roles in improving blood flow and cardiac function following myocardial infarction. The current study investigated the potential of miR-4260 in endothelial cell function and angiogenesis using human umbilical vein endothelial cells (HUVEC). Our data demonstrated that overexpression of miR-4260 was associated with increased proliferation and migration of HUVEC using EdU incorporation assay (17.25%±1.31 vs 25.78%±1.24 in nc-mimics vs miR-4260 mimics, respectively) and wound healing assay, respectively. While downregulation of miR-4260 inhibited the proliferation (17.90%±1.37 vs 10.66%±1.41 in nc-inhibitor vs miR-4260 inhibitor, respectively) and migration of HUVEC. Furthermore, we found that miR-4260 mimics increased (129.75±3.68 vs 147±3.13 in nc-mimics vs miR-4260 mimics, respectively), while miR-4260 inhibitor decreased the tube formation of HUVECs in vitro (123.25±2.17 vs 92±4.45 in nc-inhibitor vs miR-4260 inhibitor expression, respectively). Our data indicate that miR-4260 contributes to the proliferation, migration and tube formation of endothelial cells, and might be essential regulators for angiogenesis. Further study is needed to investigate the underlying mechanism that mediates the role of miR-4260 in angiogenesis by identifying its putative downstream target genes.


1998 ◽  
Vol 79 (01) ◽  
pp. 217-221 ◽  
Author(s):  
Koichi Kokame ◽  
Toshiyuki Miyata ◽  
Naoaki Sato ◽  
Hisao Kato

SummaryThrombotic complications are frequently associated with atherosclerosis. Lysophosphatidylcholine (LPC), a component accumulated in oxidatively modified LDL (ox-LDL), is known to play a crucial role in the initiation and progression of atherosclerotic vascular lesions. Since a vascular anticoagulant, tissue factor pathway inhibitor (TFPI), has the function of regulating the initial reaction of tissue factor (TF)-induced coagulation, we investigated the effect of LPC on TFPI synthesis in cultured human umbilical vein endothelial cells (HUVEC). The treatment of HUVEC with LPC for 24 h decreased TFPI antigen levels in both the culture medium and the cell lysate in a dose-dependent manner. Northern blot analysis revealed that LPC caused a time-dependent decrease in the TFPI mRNA levels. The levels of TFPI antigen and mRNA were decreased to 72% and 38%, respectively, by the incubation with 50 μM LPC for 24 h. The down-regulation by LPC of TFPI mRNA expression was not observed in the presence of cycloheximide, suggesting that protein synthesis was involved in the suppression of TFPI mRNA expression. The TFPI mRNA levels in actinomycin D-treated cells were relatively stable, indicating that the down-regulation of TFPI mRNA by LPC would be partly explained by the enhanced mRNA destabilization. In contrast to the significant down-regulatory effects of LPC on TFPI expression, LPC did not induce TF mRNA expression in HUVEC. These results indicate that LPC accumulated in the atherosclerotic vascular wall would suppress endothelial TFPI synthesis, reducing the antithrombotic property of endothelial cells.


Blood ◽  
1997 ◽  
Vol 90 (9) ◽  
pp. 3568-3578 ◽  
Author(s):  
John-Bjarne Hansen ◽  
Randi Olsen ◽  
Paul Webster

AbstractTissue factor pathway inhibitor (TFPI) is a serine protease inhibitor of the extrinsic coagulation system, synthesized in endothelial cells, which has recently been shown to play an important role in the regulation of activated coagulation factors at the endothelial cell surface. In the present study we investigated the subcellular localization and metabolism of TFPI in human umbilical vein endothelial cells (HUVEC). Immunocytochemical labeling of HUVEC with anti-TFPI showed specific labeling associated with the cell surface and with many intracellular organelles including the Golgi complex. Further characterization of these organelles was performed by colocalizing the anti-TFPI with 3-(2,4-dinitroanilino)′-amino-N-methyldipropylamine (DAMP; to demonstrate low pH), mannose phosphate receptor (endosomes), and LAMP 1 (late endocytic compartments). TFPI also colocalized with antibodies to the human transferrin receptor, a marker for early endocytic, recycling compartment. Endogenous TFPI colocalized with biotin in intracellular vesicles during endocytosis after biotinylation of the cell surface, which indicated that TFPI was being co-internalized with the surface biotin. The binding of exogenously added 125I-TFPI increased linearly to HUVEC over the concentration range of 0 to 32 nmol/L without saturation, the binding was not affected by up to a thousand-fold molar excess of unlabeled TFPI, and heparin inhibited the binding dose dependently. An intact C-terminal domain was important for the interaction between TFPI and the cell surface of HUVEC, because less than 10% of a C-terminal truncated form of TFPI (TFPI1-161 ) was bound after addition of equimolar concentrations of full-length TFPI. Exogenously added 125I-TFPI was not degraded in HUVEC during 4 hours at 37°C. The presence of TFPI in endocytic and recycling compartments support the hypothesis that endogenous, membrane-anchored TFPI could be internalized for subsequent recycling back to the cell surface.


Blood ◽  
2006 ◽  
Vol 107 (3) ◽  
pp. 931-939 ◽  
Author(s):  
Cassin Kimmel Williams ◽  
Ji-Liang Li ◽  
Matilde Murga ◽  
Adrian L. Harris ◽  
Giovanna Tosato

AbstractDelta-like 4 (Dll4), a membrane-bound ligand for Notch1 and Notch4, is selectively expressed in the developing endothelium and in some tumor endothelium, and it is induced by vascular endothelial growth factor (VEGF)-A and hypoxia. Gene targeting studies have shown that Dll4 is required for normal embryonic vascular remodeling, but the mechanisms underlying Dll4 regulatory functions are currently not defined. In this study, we generated primary human endothelial cells that overexpress Dll4 protein to study Dll4 function and mechanism of action. Human umbilical vein endothelial cells retrovirally transduced with Dll4 displayed reduced proliferative and migratory responses selectively to VEGF-A. Expression of VEGF receptor-2, the principal signaling receptor for VEGF-A in endothelial cells, and coreceptor neuropilin-1 was significantly decreased in Dll4-transduced endothelial cells. Consistent with Dll4 signaling through Notch, expression of HEY2, one of the transcription factors that mediates Notch function, was significantly induced in Dll4-overexpressing endothelial cells. The γ-secretase inhibitor L-685458 significantly reconstituted endothelial cell proliferation inhibited by immobilized extracellular Dll4 and reconstituted VEGFR2 expression in Dll4-overerexpressing endothelial cells. These results identify the Notch ligand Dll4 as a selective inhibitor of VEGF-A biologic activities down-regulating 2 VEGF receptors expressed on endothelial cells and raise the possibility that Dll4 may be exploited therapeutically to modulate angiogenesis.


Blood ◽  
2010 ◽  
Vol 116 (22) ◽  
pp. 4675-4683 ◽  
Author(s):  
Ben T. Atkinson ◽  
Reema Jasuja ◽  
Vivien M. Chen ◽  
Prathima Nandivada ◽  
Bruce Furie ◽  
...  

Laser-induced vessel wall injury leads to rapid thrombus formation in an animal thrombosis model. The target of laser injury is the endothelium. We monitored calcium mobilization to assess activation of the laser-targeted cells. Infusion of Fluo-4 AM, a calcium-sensitive fluorochrome, into the mouse circulation resulted in dye uptake in the endothelium and circulating hematopoietic cells. Laser injury in mice treated with eptifibatide to inhibit platelet accumulation resulted in rapid calcium mobilization within the endothelium. Calcium mobilization correlated with the secretion of lysosomal-associated membrane protein 1, a marker of endothelium activation. In the absence of eptifibatide, endothelium activation preceded platelet accumu-lation. Laser activation of human umbilical vein endothelial cells loaded with Fluo-4 resulted in a rapid increase in calcium mobilization associated cell fluorescence similar to that induced by adenosine diphosphate (10μM) or thrombin (1 U/mL). Laser activation of human umbilical vein endothelial cells in the presence of corn trypsin inhibitor treated human plasma devoid of platelets and cell microparticles led to fibrin for-mation that was inhibited by an inhibitory monoclonal anti–tissue factor antibody. Thus laser injury leads to rapid endothelial cell activation. The laser activated endothelial cells can support formation of tenase and prothrombinase and may be a source of activated tissue factor as well.


2017 ◽  
Vol 117 (04) ◽  
pp. 734-749 ◽  
Author(s):  
Erika Saretzki ◽  
Franziska Pankratz ◽  
Bianca Engert ◽  
Sebastian Grundmann ◽  
Christoph Bode ◽  
...  

SummaryMicroRNAs are small non-coding RNAs that negatively regulate posttranscriptional gene expression. Several microRNAs have been described to regulate the process of angiogenesis. Previously, we have shown that bone morphogenetic protein 4 (BMP4) increased the proangiogenic activity of endothelial cells. In this project, we now investigated how the pro-angiogenic BMP4 effect is mediated by microRNAs. First, we performed a microRNA array with BMP4-stimulated human umbilical vein endothelial cells (HUVECs). Among the topregulated microRNAs, we detected a decreased expression of miR-494 and increased expression of miR-126–5p. Next, we analysed the canonical Smad and alternative signalling pathways, through which BMP4 would regulate miR-126–5p and miR-494 expression. Furthermore, the functional effect of miR-494 and miR-126–5p on endothelial cells was investigated. MicroRNA-494 overexpression decreased endothelial cell proliferation, migration and sprout formation. Consistently, miR-494 inhibition increased endothelial cell function. As potential miR-494 targets, bFGF and BMP endothelial cell precursorderived regulator (BMPER) were identified and confirmed by western blot. Luciferase assays showed direct miR-494 binding in BMPER 3’UTR. In contrast, miR-126–5p overexpression increased pro-angiogenic endothelial cell behaviour and, accordingly, miR-126–5p inhibition decreased endothelial cell function. As a direct miR-126–5p target we identified the anti-angiogenic thrombospondin-1 which was confirmed by western blot analysis and luciferase assays. In the Matrigel plug assay application of antagomiR-494 increased endothelial cell ingrowth, whereas antagomiR-126–5p treatment decreased cell ingrowth in vivo. Taken together, through differential regulation of the anti-angiomiR-494 and the angiomiR-126–5p by BMP4 both microRNAs contribute to the pro-angiogenic BMP4 effect on endothelial cells.Supplementary Material to this article is available online at www.thrombosis-online.com.


2021 ◽  
Vol 62 (4) ◽  
pp. 295-306
Author(s):  
Yong Tang ◽  
Hao Dong ◽  
Wenbin Lu ◽  
Xiaofeng Zhang ◽  
Xiao Shen ◽  
...  

The vascular eendothelial cells are highly heterogeneous and associated with numerous diseases. Thymosin β4 (Tβ4) plays pleiotropic roles in endothelial cell differentiation, migration and angiogenesis. However, the underlying mechanisms played by Tβ4 in the regulation of endothelial cells have not yet been well investigated. In the present study, Tβ4 -GFP adenovirus, transfected into human umbilical vein endothelial cells (HUVECs), and cell morphology were analyzed by fluorescence microscopy. ELISA was used to determine the concentration of Tβ4 expression. Furthermore, the effects of Tβ4 overexpression on HUVECs proliferation, apoptosis and migration were investigated. Real-time quantitative PCR and western blot were conducted to examine mRNA and protein expression in HUVECs with Tβ4 overexpression. Moreover, the underlying molecular mechanism of Tβ4 in HUVECs function was tested through treatment with LY294002, a PI3K/AKT inhibitor. Overexpression of Tβ4 increased the cell ability of HUVECs, and up-regulated the expression of the proliferation markers PCNA and Cyclin D1. In addition, overexpression of Tβ4 reduced HUVECs apoptosis, both under normoxic and hypoxic conditions. Moreover, overexpression of Tβ4 increased the ability of HUVECs to migrate through the membrane and up-regulated levels of MMP-2 and MMP-9. The use of LY294002 decreased the p-AKT (Ser473) level, which was induced by Tβ4 overexpression. Importantly, LY294002 reduced Tβ4-induced HUVECs proliferation and migration. In conclusion, our results suggest that Tβ4 is a major regulator of HUVECs function by activating the AKT signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document