The Effect of Major Surgical Procedures on Plasma and Platelet Levels of Factor XIII

1974 ◽  
Vol 31 (01) ◽  
pp. 020-029 ◽  
Author(s):  
Beth A Letheby ◽  
Richard B Davis ◽  
Arden E Larsen

SummaryFactor XIII (FSF or fibrinoligase), an enzyme required for normal blood coagulation, can be measured by its catalysis of the incorporation of a fluorescent amine, monodansylcadaverine (N-(5-aminopentyl)-5-dimethylamino-l-naphthalene-sulfon-amide) into casein. The amine incorporation test was applied to fourteen patients who had major operations. Levels of factor XIII were measured before surgery and at intervals of two, four, and six days after operation. Plasma factor XIII showed a significant, linear decrease for each day after surgery. Patients having orthopedic surgery showed less pronounced changes than the remaining patients. Factor XIII also decreased after operation in patients with neoplastic disease, but the change was not different from that after general surgical procedures done in the absence of neoplasia. Platelet factor XIII levels were increased on the second day after operation, diminished on day four, and increased above pre-operative levels on the sixth day after surgery. Possible explanations of the observations are presented.

1976 ◽  
Vol 36 (03) ◽  
pp. 542-550 ◽  
Author(s):  
Mircea P. Cucuianu ◽  
K Miloszewski ◽  
D Porutiu ◽  
M. S Losowsky

SummaryPlasma factor XIII activity measured by a quantitative assay was found to be significantly higher in hypertriglyceridaemic patients (type IV and combined hyperlipoproteinaemia), as compared to normolipaemic controls. No such elevation in plasma factor XIII activity was found in patients with type IIa hyperlipaemia. Plasma pseudocholinesterase was found to parallel the elevated factor XIII activity in hypertriglyceridaemic subjects.In contrast, platelet factor XIII activity was not raised in hyperlipaemic subjects, and plasma factor XIII was found to be normal in a normolipaemic subject with throm-bocythaemia.It was concluded that there is no significant contribution from platelets to plasma factor XIII activity, and that the observed increase in plasma factor XII in hypertriglyceridaemia results from enhanced hepatic synthesis of the enzyme.


Blood ◽  
1985 ◽  
Vol 66 (5) ◽  
pp. 1028-1034 ◽  
Author(s):  
CS Greenberg ◽  
JV Dobson ◽  
CC Miraglia

Abstract The binding of plasma factor XIII to fibrinogen or fibrin that has been chemically or enzymatically induced to polymerize was studied. Factor XIII binding was assayed using a 3H-putrescine incorporation assay and an 125I-plasma factor XIII binding assay. More than 80% of the native and radiolabeled plasma factor XIII was bound to fibrin I formed by reptilase in EDTA, citrate, or heparin anticoagulated plasma. Plasma factor XIII and 125I-factor XIII was bound (89.6% to 92.5%) to fibrin II formed by thrombin in either citrate or EDTA anticoagulated plasma. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of 125I-plasma factor XIII bound to fibrin I or fibrin II formed by reptilase or thrombin in the presence of EDTA demonstrated the b2- subunit remained bound to the a-chains or thrombin-cleaved a-chains. In the presence of calcium chloride and thrombin, the b2-subunit dissociated and factor XIIIa was bound. Protamine sulfate caused fibrinogen polymerization in the absence of divalent cations and reduced both plasma factor XIII and immunologic fibrinogen levels. Fibrinogen polymerized by protamine sulfate bound plasma factor XIII and the a2-subunit of 125I-platelet factor XIII. Plasma factor XIII was also bound to sonicated non-cross-linked fibrin II in either normal plasma or afibrinogenemic plasma. Plasma levels of several coagulation proteins were unchanged after the addition of reptilase, protamine sulfate, or sonicated fibrin to plasma. These results demonstrate that a specific binding site for the a2-subunit of plasma factor XIII is present on polymerized fibrinogen, fibrin I, and fibrin II. Furthermore, the presence of divalent cations, thrombin-cleavage of plasma factor XIII, and release of fibrinopeptides A or B are not required for plasma factor XIII binding to polymerized fibrinogen and fibrin.


1975 ◽  
Author(s):  
D. Bannerjee ◽  
M. W. Mosesson

Human plasma Factor XIII (F. XIII) complex is composed of two types of noncovalently linked polypeptide chains termed a and b; only the a chain possesses catalytic potential. Platelet Factor XIII is comprised solely of a chains which are identical to those found in plasma. In this study platelets were utilized as a source of unbound a chains to characterize F. XIII (a chain)-binding activity in plasma and its subfractions. Upon exclusion chromatography of unheated plasma or of an unheated ammonium sulfate (20% sat.) subfraction, F. XIII activity emerged in a peak corresponding to a mol. wt. of < 500,000 (region 1). If these samples had first been heated at 60° to precipitate fibrinogen, F. XIII was eluted in a peak corresponding to a mol wt. of about 300,000 (region 2). Chromatography of the platelet zymogen alone resulted in a F. XIII peak corresponding in position to that of monomeric a chain (mol. wt. 80,000, region 3).Exclusion chromatography of the unheated ammonium sulfate fraction yielded, in addition to the F. XIII peak in region 1, a protein peak (peak II) in region 2 which contained no F. XIII. When peak II was mixed with platelet F. XIII, and again subjected to exclusion chromatography, the platelet F. XIII peak shifted from its expected position in region 3 and emerged instead in region 2 ; this behavior demonstrated F. XIII (a chain)-binding activity within peak II. The same chromatographic shift was observed in mixtures of platelet F. XIII and normal plasma or that from a patient with congenital F. XIII (a chain) deficiency. Immunochemical analyses of chromatographic fractions indicated that a chain-binding was due to complexing of a chains with freely circulating b chains. Since a chains and b chains have different biosynthetic sites we conclude that b chains serve as an extracellular F. XIII (a chain)-binding protein.Supported by NHLI grant HL-11409.


1981 ◽  
Author(s):  
D M Rider ◽  
J M McDonagh

The action of plasmin on several blood clotting factors has been studied; however, controversy exists concerning the effect of plasmin on factor XIII. Factor XIII was purified from plasma and platelets and then exposed to plasmin for up to 6 hours. Plasmin to factor XIII ratios ranged from 0.03-0.1 casein units plasmin per mg factor XIII. These plasmin levels exhibited strong proteolytic activities against B-casein and purified human fibrinogen Following incubation of factor XIII (activated and unactivated) with plasmin the mixtures were electrophoresed on 7% SDS-polyacrylamide gels. The factor XIII preparations were assayed for 14C-putrescine incorporating activity before and after exposure to plasmin. Platelet factor XIII was,labeled With 125Iodine and lableled a subunit (activated and unactivated) was exposed to plalmin for up to 2 hours. These mixtures were electrophoresed on 12.5% Urea-SDS Polyacrylamide gels and a radioactivity profile was determined for each gel.Following extensive exposure to Plasmin the relative molecular weights of the factor XIII subunits (a, a* and b)remained constant and almost all (90-100%) of the 14C-put-rescine incorporating activity was recovered. The radio-activity profiles of the gels of 125I-labeled platelet factor XIII were identical before and after incubation with plasmin. Plasmin did not activate factor XIII in the assay system nor did factor XIII inactivate plasmin by crosslinking it. These experiments indicate that plasmin does not activate or degrade factor XIII and that the b subunit of plasma factor XIII plays no role in protecting the a subunit from the action of plasmin.


1999 ◽  
Vol 82 (08) ◽  
pp. 234-242 ◽  
Author(s):  
Peter Walsh

IntroductionFactor XI is a plasma glycoprotein (concentration ∼30 nM) that was first identified by Rosenthal et al1 as a plasma coagulation factor deficiency in patients with abnormal hemostasis, particularly common among Ashkenazi Jews.2,3 In spite of recent advances in our understanding of the structure of factor XI and its gene, the structure-function relationships of the protein, and the molecular genetics of factor XI deficiency, considerable confusion about the physiologic role and clinical relevance of factor XI has arisen from both clinical and biochemical observations. One problem arises from the fact that, until recently, the only known pathway for activation of factor XI involved proteolytic activation by factor XIIa and interactions with coagulation proteins of the contact phase of blood coagulation.4-7 The problem arose from the clinical observation that patients with deficiencies of factor XI are subject to bleeding complications, whereas patients with deficiencies of the contact proteins are not.2,3,8-13 A related unanswered question concerns the lack of correlation in many reported patients between plasma levels of factor XI and the severity of clinical bleeding manifestations.2,3,8,9,13-15 In addition, some patients with severe factor XI deficiency experience significant bleeding complications, whereas others appear to be hemostatically normal. These clinical and biochemical observations have motivated investigations focused on alternative mechanisms for activation of factor XI independent of contact phase protein.19-22 Additional studies have focused on the identification and characterization of platelet factor XI, which is postulated to be an alternative splicing product of the factor XI gene. Platelet factor XI is present in platelet membranes and might substitute for plasma factor XI in hemostasis and account for the absence of bleeding complications in some patients with severe plasma factor XI deficiency.14,16-18,23-26 Studies addressing these two important and related problems are presented and discussed in this chapter.


1935 ◽  
Vol 18 (4) ◽  
pp. 531-545 ◽  
Author(s):  
Harry Eagle

1. A method is described for the preparation and titration of prothrombin and thrombin. 2. Confirming the views of Morawitz, Howell (1916–17, 1925), and Bordet, thrombin cannot be regarded as an artificial by-product of coagulation (Wooldridge, Nolf (both quoted from Morawitz)). Calcium, a platelet factor, and a plasma factor (prothrombin) interact to form thrombin, and this then acts upon fibrinogen to form fibrin. The amount and rate of thrombin formation in the first reaction are independent of the presence or absence of fibrinogen. After a variable latent period, thrombin suddenly appears in large quantities, coincident with or immediately preceding the deposition of fibrin if fibrinogen is present. 3. The amount of thrombin formed in a mixture of prothrombin, Ca and platelets is independent of the platelet or Ca concentration, and depends primarily upon the amount of prothrombin used. The platelets (or cephalin) enormously accelerate the transformation of prothrombin to thrombin, and this acceleration seems to be their physiological rôle in the coagulation process. 4. Contrary to previous reports, platelets have not been demonstrated to contain significant quantities of prothrombin. 5. The available data do not allow any definite decision as to whether the platelet factor actually combines with prothrombin to form thrombin, or merely catalyzes the transformation. The very slow formation of thrombin in the complete absence of platelets may be due to dissolved traces of platelet material released during the physical manipulation of the plasma (centrifuging, Berkefeld filtration). 6. There was no evidence for a species-specific activity of platelets in the transformation of prothrombin to thrombin.


1975 ◽  
Author(s):  
K. Mikami ◽  
T. Mikami ◽  
H. Suzuki ◽  
M. Fujimaki ◽  
K. Fukutake

The plasmin digestion of factor XIII in the plasma with congenital afibrinogenemia has been reported by Suzuki et al. in 1967. The present investigation using polyacrylamide gel electrophoresis and crossimmunoelectrophoresis with anti-factor XIII (A & S) serum demonstrates that the process of plasmin digestion of factor XIII can be divided into three steps ; the subunit A of factor XIII such as placental or platelet factor XIII is ready to get plasmin digestion following the decrease of amount and activity of subunit A, and the subunit S in the A1 S complex like plasma factor XIII is more readily affectable on the plasmin digestion than the subunit A of the complex, and the A2 S complex coexisting with fibrinogen or plasma protein is fairly stable on exposure to plasmin.


1993 ◽  
Vol 69 (03) ◽  
pp. 282-285 ◽  
Author(s):  
László Muszbek ◽  
János Polgár ◽  
Zoltán Boda

SummaryThe potentially active A subunit of factor XIII of blood coagulation has also been detected in platelets and monocytes/macrophages though the exact function of this cellular protransglutaminase has not yet been elucidated. In physiological conditions the first step in the activation of plasma factor XIII is the removal of an activation peptide from the N-terminal end of subunit A by thrombin. The A subunit then, in the presence of Ca2+, dissociates from the inhibitory B subunit and assumes an active conformation. Cellular factor XIII, which lacks B subunit, can be proteolytically activated in vitro by thrombin and the intracellular Ca2+ sensitive protease, calpain, in the same way as plasma factor XIII subunit A, and calpain has been suggested as the intracellular protease involved in the activation of cellular factor XIII in platelets. In the present experiments it was shown by SDS PAGE that during long-term stimulation of platelets with thrombin nondisulfide-crosslinked high M r protein polymers not penetrating the concentrating gel were formed. The lack of these polymers in thrombin-stimulated factor XIII deficient platelets clearly indicated that their formation in normal platelets was due to factor XIII that became active during platelet activation. However, no release of the activation peptide could be detected by Western blotting during this process. Similarly, no proteolytic cleavage of factor XIII was detectable when platelets were stimulated by Ca2+ ionophore through this stimulus activated calpain as it was clearly demonstrated by the breakdown of major intracellular calpain substrates. The results indicate: 1) during thrombin induced platelet activation factor XIII becomes active and crosslinks platelet protein, 2) platelet factor XIII is not an intracellular substrate of calpain, 3) cellular factor XIII could be activated without the proteolytic removal of activation peptide. It is presumed that the nonproteolytic pathway for the activation of cellular factor XIII, we reported most recently, might have physiological implications under such conditions.


Blood ◽  
1985 ◽  
Vol 66 (5) ◽  
pp. 1028-1034 ◽  
Author(s):  
CS Greenberg ◽  
JV Dobson ◽  
CC Miraglia

The binding of plasma factor XIII to fibrinogen or fibrin that has been chemically or enzymatically induced to polymerize was studied. Factor XIII binding was assayed using a 3H-putrescine incorporation assay and an 125I-plasma factor XIII binding assay. More than 80% of the native and radiolabeled plasma factor XIII was bound to fibrin I formed by reptilase in EDTA, citrate, or heparin anticoagulated plasma. Plasma factor XIII and 125I-factor XIII was bound (89.6% to 92.5%) to fibrin II formed by thrombin in either citrate or EDTA anticoagulated plasma. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of 125I-plasma factor XIII bound to fibrin I or fibrin II formed by reptilase or thrombin in the presence of EDTA demonstrated the b2- subunit remained bound to the a-chains or thrombin-cleaved a-chains. In the presence of calcium chloride and thrombin, the b2-subunit dissociated and factor XIIIa was bound. Protamine sulfate caused fibrinogen polymerization in the absence of divalent cations and reduced both plasma factor XIII and immunologic fibrinogen levels. Fibrinogen polymerized by protamine sulfate bound plasma factor XIII and the a2-subunit of 125I-platelet factor XIII. Plasma factor XIII was also bound to sonicated non-cross-linked fibrin II in either normal plasma or afibrinogenemic plasma. Plasma levels of several coagulation proteins were unchanged after the addition of reptilase, protamine sulfate, or sonicated fibrin to plasma. These results demonstrate that a specific binding site for the a2-subunit of plasma factor XIII is present on polymerized fibrinogen, fibrin I, and fibrin II. Furthermore, the presence of divalent cations, thrombin-cleavage of plasma factor XIII, and release of fibrinopeptides A or B are not required for plasma factor XIII binding to polymerized fibrinogen and fibrin.


Sign in / Sign up

Export Citation Format

Share Document