Pharmacokinetics of Full Length and Two-Domain Tissue Factor Pathway Inhibitor in Combination with Heparin in Rabbits

1993 ◽  
Vol 70 (03) ◽  
pp. 454-457 ◽  
Author(s):  
Claus Bregengaard ◽  
Ole Nordfang ◽  
Per Østergaard ◽  
Jens G L Petersen ◽  
Giorgio Meyn ◽  
...  

SummaryTissue factor pathway inhibitor (TFPI) is a feed back inhibitor of the initial activation of the extrinsic pathway of coagulation. In humans, injection of heparin results in a 2-6 fold increase in plasma TFPI and recent studies suggest that TFPI may be important for the anticoagulant activity of heparin. Full length (FL) TFPI, but not recombinant two-domain (2D) TFPI, has a poly cationic C-terminus showing very strong heparin binding. Therefore, we have investigated if heparin affects the pharmacokinetics of TFPI with and without this C-terminus.FL-TFPI (608 U/kg) and 2D-TFPI (337 U/kg) were injected intravenously in rabbits with and without simultaneous intravenous injections of low molecular weight heparin (450 anti-XaU/kg).Heparin decreased the volume of distribution and the clearance of FL-TFPI by a factor 10-15, whereas the pharmacokinetics of 2D-TFPI were unaffected by heparin. When heparin was administered 2 h following TFPI the recovery of FL-TFPI was similar to that found in the group receiving the two compounds simultaneously, suggesting that the releasable pool of FL-TFPI is removed very slowly in the absence of circulating heparin.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4417-4417 ◽  
Author(s):  
Michael Palige ◽  
Christoph Redl ◽  
Sabine Knappe ◽  
Hartmut J. Ehrlich ◽  
Michael Dockal ◽  
...  

Abstract Abstract 4417 BAX513, a fucoidan derived from the brown seaweed Laminaria japonica, and other non-anticoagulant sulfated polysaccharides (NASPs) improve coagulation in hemophilic blood and plasma. Fucoidans are heterogeneous, polysulfated molecules with procoagulant activities in a wide concentration range. Tissue factor pathway inhibitor (TFPI) has been described as a potential target for the procoagulant activity of NASPs (Liu et al. Thromb Haemost 2006; 95:68). In the current study, we investigated the interaction of BAX513 with TFPI proteins to gain a detailed understanding of the mechanism of action of BAX513. We used calibrated automated thrombography to monitor the activity of BAX513 in normal, FX and TFPI-deficient plasma. TFPI plasma levels were varied by the addition of truncated TFPI (TFPI1-160) and TFPI-domain specific antibodies. Initiating thrombin generation by addition of FXa to plasma deficient in both, FX and FVIII-showed a BAX513-dose dependent increase of thrombin generation, which was completely abolished when TFPI-specific polyclonal antibodies were present. Furthermore, when full-length TFPI was inhibited in plasma and instead supplemented with increasing amounts of TFPI 1–160, BAX513 did not show any activity. The data are further supported by surface plasmon resonance experiments (BiaCore) exploring the BAX513-TFPI interaction. A high affinity interaction was only observed for BAX513 with full-length TFPI but not for BAX513 with TFPI1-160. Our findings support a mechanism of action in which BAX513 acts as a potent dose-dependent TFPI antagonist that requires the highly charged C-terminus of TFPI to unfold its full potential. Understanding the mechanism of action of BAX513 supports the development of BAX513 as a promising new therapeutic for hemophiliacs and FVIII-inhibitor patients. Disclosures: Palige: Baxter Innovations GmbH: Employment. Redl:Baxter Innovations GmbH: Employment. Knappe:Baxter Innovations GmbH: Employment. Ehrlich:Baxter Innovations GmbH: Employment. Dockal:Baxter Innovations GmbH: Employment. Scheiflinger:Baxter Innovations GmbH: Employment.


1997 ◽  
Vol 323 (1) ◽  
pp. 33-37 ◽  
Author(s):  
Jo FRANSSEN ◽  
Irene SALEMINK ◽  
George M. WILLEMS ◽  
Tze-Chein WUN ◽  
H. Coenraad HEMKER ◽  
...  

The inhibition of prothrombinase by tissue factor pathway inhibitor (TFPI) has been studied in the presence and absence of prothrombin. The rate constant of association of prothrombinase with full-length TFPI was 2.1×107 M-1ċs-1 and 0.05×107 M-1ċs-1 for the reaction with C-terminus truncated TFPI (TFPI1-161). The rate constant of dissociation was 0.65×10-4 s-1 in both cases. The rate constant of inhibition of prothrombinase by TFPI1-161 was similar to that of solution-phase factor Xa. In contrast, phospholipids and factor Va enhanced the association rate of the reaction between factor Xa and full-length TFPI by approx. 20-fold. Although TFPI, and in particular the full-length variant of the molecule, is a potent inhibitor of prothrombinase (overall inhibition constant of 3 pM), we also found that prothrombin competed very effectively with TFPI for the active site of factor Xa in the prothrombinase complex. A 50% reduction of the rate constant of inhibition was measured in the presence of 4 nM prothrombin, i.e. 0.2% of the plasma concentration of prothrombin. The physiological significance of TFPI as an inhibitor of prothrombinase activity is thus questionable.


Biochemistry ◽  
1991 ◽  
Vol 30 (43) ◽  
pp. 10371-10376 ◽  
Author(s):  
Ole Nordfang ◽  
Soeren E. Bjoern ◽  
Sanne Valentin ◽  
Lars S. Nielsen ◽  
Peter Wildgoose ◽  
...  

1993 ◽  
Vol 70 (03) ◽  
pp. 448-453 ◽  
Author(s):  
Ole Nordfang ◽  
Hanne I Kristensen ◽  
Sanne Valentin ◽  
Per Østergaard ◽  
Johnny Wadt

SummaryThe anticoagulant activities of Tissue Factor Pathway Inhibitor (TFPI), heparin and hirudin were compared in intrinsic (APTT) and extrinsic (PT) activated clotting assays. In contrast to the thrombin inhibitor hirudin, heparin was 10 fold more potent in the APTT assay than in the PT assay, indicating that inhibition of intrinsic activation is important for the anticoagulant activity of heparin as measured in an APTT assay. TFPI was most potent in the PT assay and the effect of TFPI was most pronounced in the presence of other anticoagulants (heparin and hirudin). The activities of the two natural anticoagulants antithrombin III (ATIII) and TFPI were compared in a PT assay with very dilute tissue factor. In this assay system TFPI in normal plasma affected the clotting time more than ATIII in the plasma. However, when heparin was added ATIII was the major anticoagulant, but profound Prolongation of the clotting time was only seen when TFPI was also added. In an ATIII deficient plasma heparin did not augment the effect of TFPI, showing that the increased effect of TFPI in the presence of heparin is dependent on the anticoagulant activity of ATIII/heparin. The effect of TFPI at prolonged clotting times was also illustrated by the significant effect of blocking TFPI in the plasma from warfarin-treated patients. Thus TFPI is a major anticoagulant in normal plasma and the effect of TFPI is especially seen at prolonged clotting times.


1996 ◽  
Vol 75 (05) ◽  
pp. 796-800 ◽  
Author(s):  
Sanne Valentin ◽  
Inger Schousboe

SummaryIn the present study, the interaction between tissue factor pathway inhibitor (TFPI) and phospholipids has been characterized using a microtitre plate assay. TFPI was shown to bind calcium-independently to an acidic phospholipid surface composed of phosphatidylserine, but not a surface composed of the neutral phosphatidylcholine. The interaction was demonstrated to be dependent on the presence of the TFPI C-terminus. The presence of heparin (1 U/ml, unfractionated) was able to significantly reduce the binding of TFPI to phospholipid. The interaction of TFPI with phosphatidylserine was significantly decreased in the presence of calcium, but this was counteracted, and even enhanced, following complex formation of TFPI with factor Xa prior to incubation with the phospholipid surface. Moreover, a TFPI variant, not containing the third Kunitz domain and the C-terminus, was unable to bind to phospholipid. However, following the formation of a TFPI/factor Xa-complex this TFPI variant was capable of interacting with the phospholipid surface. This indicates that the role of factor Xa as a TFPI cofactor, at least in part, is to mediate the binding of TFPI to the phospholipid surface.


1997 ◽  
Vol 78 (02) ◽  
pp. 864-870 ◽  
Author(s):  
Hideki Nagase ◽  
Kei-ichi Enjyoji ◽  
Yu-ichi Kamikubo ◽  
Keiko T Kitazato ◽  
Kenji Kitazato ◽  
...  

SummaryDepolymerized holothurian glycosaminoglycan (DHG) is a glycosaminoglycan extracted from the sea cucumber Stichopus japonicusSelenka. In previous studies, we demonstrated that DHG has antithrombotic and anticoagulant activities that are distinguishable from those of heparin and dermatan sulfate. In the present study, we examined the effect of DHG on the tissue factor pathway inhibitor (TFPI), which inhibits the initial reaction of the tissue factor (TF)-mediated coagulation pathway. We first examined the effect of DHG on factor Xa inhibition by TFPI and the inhibition of TF-factor Vila by TFPI-factor Xa in in vitro experiments using human purified proteins. DHG increased the rate of factor Xa inhibition by TFPI, which was abolished either with a synthetic C-terminal peptide or with a synthetic K3 domain peptide of TFPI. In contrast, DHG reduced the rate of TF-factor Vila inhibition by TFPI-factor Xa. Therefore, the effect of DHG on in vitroactivity of TFPI appears to be contradictory. We then examined the effect of DHG on TFPI in cynomolgus monkeys and compared it with that of unfractionated heparin. DHG induced an increase in the circulating level of free-form TFPI in plasma about 20-fold when administered i.v. at 1 mg/kg. The prothrombin time (PT) in monkey plasma after DHG administration was longer than that estimated from the plasma concentrations of DHG. Therefore, free-form TFPI released by DHG seems to play an additive role in the anticoagulant mechanisms of DHG through the extrinsic pathway in vivo. From the results shown in the present work and in previous studies, we conclude that DHG shows anticoagulant activity at various stages of coagulation reactions, i.e., by inhibiting the initial reaction of the extrinsic pathway, by inhibiting the intrinsic Xase, and by inhibiting thrombin.


2005 ◽  
Vol 280 (23) ◽  
pp. 22308-22317 ◽  
Author(s):  
Cristina Lupu ◽  
Xiaohong Hu ◽  
Florea Lupu

Tissue factor pathway inhibitor (TFPI) blocks tissue factor-factor VIIa (TF-FVIIa) activation of factors X and IX through the formation of the TF-FVIIa-FXa-TFPI complex. Most TFPI in vivo associates with caveolae in endothelial cells (EC). The mechanism of this association and the anticoagulant role of caveolar TFPI are not yet known. Here we show that expression of caveolin-1 (Cav-1) in 293 cells keeps TFPI exposed on the plasmalemma surface, decreases the membrane lateral mobility of TFPI, and increases the TFPI-dependent inhibition of TF-FVIIa. Caveolae-associated TFPI supports the co-localization of the quaternary complex with caveolae. To investigate the significance of these observations for EC we used RNA interference to deplete the cells of Cav-1. Functional assays and fluorescence microscopy revealed that the inhibitory properties of TFPI were diminished in EC lacking Cav-1, apparently through deficient assembly of the quaternary complex. These findings demonstrate that caveolae regulate the inhibition by cell-bound TFPI of the active protease production by the extrinsic pathway of coagulation.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Jeremy P Wood ◽  
Lisa M Baumann Kreuziger ◽  
Susan A Maroney ◽  
Rodney M Camire ◽  
Alan E Mast

Factor V (FV) assembles with factor Xa (FXa) into prothrombinase, the enzymatic complex that converts prothrombin to thrombin. Tissue factor pathway inhibitor α (TFPIα) inhibits prothrombinase by high affinity interactions with FXa-activated FV and the FXa active site, thereby blocking the initiation of coagulation. FV Leiden (FVL) is strongly linked to venous thrombosis through its resistance to degradation by activated protein C (aPC), which enhances the propagation of coagulation. FVL combined with a 50% reduction in TFPI causes severe thrombosis and perinatal lethality in mice, suggesting that FVL also promotes the initiation of coagulation. To examine this possibility, thrombin generation assays initiated with limiting FXa were performed with control or FVL plasma and platelet-rich plasma (PRP). The activation threshold for thrombin generation was 10 to 20 pM FXa in 10 control plasmas, but was 5 pM in 4 of 10 homozygous FVL plasmas. FVL PRP had a similar decrease in the activation threshold. The differences in activation threshold were totally normalized by an anti-TFPI antibody, while exogenous TFPIα and a FV-binding peptide that mimics TFPIα had reduced anticoagulant activity in FVL plasma, revealing that the procoagulant effects of FVL in these assays rely on TFPIα. Next, FVL plasmas were studied in fibrin clot formation assays, as they are sensitive to small amounts of thrombin. In reactions activated with 0.5 pM FXa, 1 of 8 control plasmas, compared to 7 of 8 homozygous FVL plasmas, clotted within 60 minutes, with differences again normalized by the anti-TFPI antibody. In prothrombinase activity assays using purified proteins, TFPIα was a 1.7-fold weaker inhibitor of prothrombinase assembled with FVL compared to FV. Thus, in addition to its aPC-mediated effect on the propagation of coagulation, FVL is resistant to TFPIα inhibition, exerting a procoagulant effect on coagulation initiation. This is evident in responses to small stimuli, where TFPIα blocks clotting in plasmas with FV but not FVL. The TFPIα-mediated modulation of the procoagulant threshold may explain the severe perinatal thrombosis in FVL mice with decreased TFPI and be clinically relevant in the clotting associated with oral contraceptives, which cause acquired TFPI deficiency.


Blood ◽  
2000 ◽  
Vol 95 (6) ◽  
pp. 1973-1978 ◽  
Author(s):  
Guyu Ho ◽  
Masaaki Narita ◽  
George J. Broze ◽  
Alan L. Schwartz

Abstract Tissue factor pathway inhibitor (TFPI) plays a key role in the regulation of tissue factor-initiated blood coagulation secondary to loss of the integrity of the blood vessel wall. TFPI is a naturally occurring Kunitz-type protease inhibitor that inhibits coagulation factor Xa and, in a factor Xa-dependent manner, mediates feedback inhibition of the factor VIIa/tissuefactor catalytic complex. In vivo full-length TFPI is thought to be primarily bound to the vascular endothelium and the high affinity binding requires an intact carboxy terminus. Here we describe a full-length TFPI molecule, expressed in mouse C127 cells (TFPIC127), which exhibits virtually no cellular binding yet contains the intact carboxy terminus. This TFPI (TFPIC127) is neither internalized nor degraded via the TFPI endocytic receptor, LDL-receptor–related protein. Pharmacokinetic studies of TFPIC127 in vivo demonstrate a 10-fold prolongation in the plasma half-life, compared with that of bacterial recombinant TFPI.


2008 ◽  
Vol 99 (01) ◽  
pp. 133-141 ◽  
Author(s):  
Yona Nadir ◽  
Benjamin Brenner ◽  
Sveta Gingis-Velitski ◽  
Flonia Levy-Adam ◽  
Neta Ilan ◽  
...  

SummaryHeparanase activity is implicated in cell invasion, tumor metastasis and angiogenesis. Recently, we have reported that heparanase stimulates tissue factor (TF) expression in endothelial and cancer cells, resulting in elevation of coagulation activity. We hypothesized that heparanase regulates other coagulation modulators, and examined the expression and localization of tissue factor pathway inhibitor (TFPI) following heparanase over-expression or exogenous addition. Primary human umbilical vein endothelial cells (HUVEC) and human tumor-derived cell lines were incubated with heparanase, or were stably transfected with heparanase gene-constructs, and TFPI expression and secretion were examined. Heparanase over-expression or exogenous addition stimulated TFPI expression by 2–3 folds. TFPI accumulation in the cell culture medium exceeded in magnitude the observed induction ofTFPI gene transcription reaching 5– to 6-fold increase. Extracellular accumulation of TFPI was evident already 60 min following heparanase addition, prior toTFPI protein induction, and correlated with increased coagulation activity. This effect was found to be independent of heparanase enzymatic activity and interaction with heparan-sulfate, and correlated with reduced TFPI levels on the cell surface. Data were verified in heparanase transgenic mice tissues and plasma. Interaction between heparanase and TFPI was evident by co-immunoprecipitation. Interaction of heparanase with TFPI resulted in its displacement from the surface of the vascular endothelium and in increased pro-coagulant activity. Thus, heparanase facilitates blood coagulation on the cell surface by two independent mechanisms:dissociation ofTFPI from the vascular surface short after local elevation of heparanase levels, and subsequent induction of TF expression.


Sign in / Sign up

Export Citation Format

Share Document