A Novel Platelet Activating Factor Antagonist, SM-12502, Attenuates Endotoxin-induced Disseminated Intravascular Coagulation and Acute Pulmonary Vascular Injury by Inhibiting TNF Production in Rats

1996 ◽  
Vol 75 (06) ◽  
pp. 965-970 ◽  
Author(s):  
Kazunori Murakami ◽  
Kenji Okajima ◽  
Mitsuhiro Uchiba ◽  
Masayoshi Johno ◽  
Hiroaki Okabe ◽  
...  

SummaryAdult respiratory distress syndrome and disseminated intravascular coagulation are important pathologic conditions affecting the outcome of patients with sepsis. To elucidate the possible therapeutic efficacy of SM-12502, a novel platelet activating factor antagonist, on acute lung injury and disseminated intravascular coagulation in sepsis, we investigated the effect of SM-12502 on an endotoxin (ET)-induced septic model in rats. SM-12502 prevented ET-induced increases in pulmonary vascular permeability and ET-induced histologic changes, such as leukocyte infiltration and pulmonary interstitial edema, 6 h following the administration of ET (5 mg/kg). SM-12502 also inhibited the decrease in fibrinogen and the increase in fibrin and fibrinogen degradation products observed following ET administration. SM-12502 prevented increases in the serum concentration of tumor necrosis factor (TNF) 90 min following ET administration in vivo, and significantly inhibited the production of TNF-α by ET-stimulated monocytes in vitro.These findings suggest that SM-12502 attenuates the actions of endotoxin by the inhibition of TNF production

2013 ◽  
Vol 36 (2) ◽  
pp. 87-96 ◽  
Author(s):  
Sophia N. Verouti ◽  
Alexandros B. Tsoupras ◽  
Fotini Alevizopoulou ◽  
Constantinos A. Demopoulos ◽  
Christos Iatrou

Purpose Paricalcitol improves the inflammatory status of hemodialysis patients. PAF is a strong inflammatory mediator which is produced during hemodialysis. We studied the effects of paricalcitol on PAF and other inflammatory mediators implicated in chronic kidney disease (CKD). Methods We examined the in vitro effects of paricalcitol on PAF/thrombin-induced aggregation as well as on the activities of PAF-basic metabolic enzymes, lyso-PAF acetyltransferase (Lyso-PAF-AT), DTT-insensitive CDP-choline: 1-alkyl-2-acetyl-sn-glycerol cholinephospho-transferase (PAF-CPT) and PAF-acetylhydrolase (PAF-AH) in blood cells from healthy volunteers. In addition, the in vivo effects of paricalcitol on the above these enzymes were examined in plasma and blood cells of hemodialysis patients who had not received any type of vitamin D treatment during the last three months before and after receiving paricalcitol for a month. Finally, IL-12p70, IL-1β, IL-6, IL-8 and TNF-α were measured. Results Paricalcitol inhibited in vitro PAF/thrombin-induced platelet aggregation and the inhibitory effect was comparable with that of PAF/thrombin antagonists. In addition, paricalcitol inhibited in vitro PAF-CPT activity in platelets and leukocytes and increased PAF-AH activity in leukocytes, while much higher concentrations of paricalcitol were needed to inhibit Lyso-PAF-AT activity. Similarly, in hemodialysis patients, paricalcitol treatment reduced PAF-CPT activity in platelets and leukocytes and increased PAF-AH activity in leukocytes, while it could not influence Lyso-PAF-AT activity. On the other hand, paricalcitol therapy reduced IL-8, IL-1β, and TNF-α. Conclusions These results further support the beneficial effects of vitamin D treatment in hemodialysis patients, since it strongly affects PAF/thrombin activities, PAF-metabolism, and IL-8, IL-1β and TNF-α circulating levels.


1974 ◽  
Vol 31 (02) ◽  
pp. 319-327
Author(s):  
Thomas R Poskitt ◽  
H Philip Fortwengler ◽  
Gerald J Roth ◽  
James A Eaton

SummaryImmunochemical, physical, and anticoagulant properties of human and monkey (Macaca irus) fibrinogen degradation products (FDP’s) were compared by Immunoelectrophoresis, Sephadex G-200 gel filtration, and anticoagulant assay. Both species demonstrated a high degree of similarity in the properties and sequence of generation of FDP’s derived from in vitro plasmin digestion of highly purified fibrinogen. The results of this study should permit a closer analogy to be drawn between the pathogenic mechanisms of disseminated intravascular coagulation occurring experimentally in monkeys and clinically in humans.


1995 ◽  
Vol 88 (2) ◽  
pp. 149-157 ◽  
Author(s):  
Viviane Martin ◽  
Marie-Louise Wiesel ◽  
Anne Albert ◽  
Alain Beretz

1. Hypotension and vascular hyporesponsiveness to vasoconstrictors are observed during endotoxic shock, and are associated with increased production of nitric oxide in the vascular wall. Disseminated intravascular coagulation is another feature of septicaemia. We hypothesized that thrombin generated during disseminated intravascular coagulation might modulate the changes in vascular tone induced by endotoxin. 2. Incubation of rat aortic rings for 4 h with α-thrombin (0.003–3.0 NIH units/ml) did not change their reactivity to noradrenaline. Incubation for 4 h with lipopolysaccharide increased the EC50 for noradrenaline, whereas co-incubation of thrombin (0.5 NIH units/ml) with lipopolysaccharide did not alter this hyporeactivity to noradrenaline. 3. In vivo in rats, lipopolysaccharide caused early (1 h) and late (4–6 h) hyporeactivity to noradrenaline. In rats infused with lipopolysaccharide and heparin (1 U min−1 kg−1, 0.4 ml/h) or hirudin (2.2 mg ml−1 kg−1, 0.8 ml/h), vasopressor responses to noradrenaline were not different from those after infusion of lipopolysaccharide alone. Aortic rings taken from rats receiving both anticoagulant treatment and lipopolysaccharide had the same sensitivity to noradrenaline as those obtained from rats receiving lipopolysaccharide alone. 4. Our results suggest that, in vivo, disseminated intravascular coagulation does not modify the early and late effects of lipopolysaccharide on arterial pressure and that, in vitro, thrombin neither induces hyporeactivity to noradrenaline nor modifies lipopolysaccharide-induced hyporeactivity. We propose that thrombin generated during disseminated intravascular coagulation in rats does not play a major role in the alterations of vascular tone observed during endotoxic shock.


2019 ◽  
Vol 48 (6) ◽  
pp. 030006051988943
Author(s):  
Lin Zhi ◽  
Shangqi Yang ◽  
Jiekun Chen ◽  
Yuli Lu ◽  
Jiahong Chen ◽  
...  

Objectives The aim of this study was to determine the therapeutic effects of tetrahydropalmatine (Tet) on disseminated intravascular coagulation (DIC) by exploring the role of Tet using a lipopolysaccharide (LPS)-induced DIC model. Methods/Materials: We established a mouse DIC model by injecting LPS. Hematoxylin-eosin (HE) staining was performed to detect liver and kidney damage. Blood samples were obtained to determine liver and kidney injury indexes, coagulation indexes, and inflammatory cytokines. An in vitro cell inflammation model was also established. Tumor necrosis factor-α (TNF-α) levels and nuclear factor kappa B (NF-κB) signaling pathway activation were determined by western blot. Result Tet ameliorated the damage to organ tissues, improved coagulation indexes, and reduced the inflammatory cytokine production in LPS-induced mouse DIC. Tet also inhibited TNF-α expression by suppressing NF-κB signaling pathway activation in an in vitro LPS model using RAW 264.7 macrophages. Conclusions Tet has a mitigating and therapeutic effect on the LPS-induced DIC model via anticoagulant and anti-inflammatory effects, showing its potential as an adjunct to DIC treatment.


Blood ◽  
2010 ◽  
Vol 116 (20) ◽  
pp. 4376-4384 ◽  
Author(s):  
Leah N. Cueni ◽  
Lu Chen ◽  
Hui Zhang ◽  
Daniela Marino ◽  
Reto Huggenberger ◽  
...  

Abstract Podoplanin is a small transmembrane protein required for development and function of the lymphatic vascular system. To investigate the effects of interfering with its function, we produced an Fc fusion protein of its ectodomain. We found that podoplanin-Fc inhibited several functions of cultured lymphatic endothelial cells and also specifically suppressed lymphatic vessel growth, but not blood vessel growth, in mouse embryoid bodies in vitro and in mouse corneas in vivo. Using a keratin 14 expression cassette, we created transgenic mice that overexpressed podoplanin-Fc in the skin. No obvious outward phenotype was identified in these mice, but surprisingly, podoplanin-Fc—although produced specifically in the skin—entered the blood circulation and induced disseminated intravascular coagulation, characterized by microthrombi in most organs and by thrombocytopenia, occasionally leading to fatal hemorrhage. These findings reveal an important role of podoplanin in lymphatic vessel formation and indicate the potential of podoplanin-Fc as an inhibitor of lymphangiogenesis. These results also demonstrate the ability of podoplanin to induce platelet aggregation in vivo, which likely represents a major function of lymphatic endothelium. Finally, keratin 14 podoplanin-Fc mice represent a novel genetic animal model of disseminated intravascular coagulation.


1979 ◽  
Vol 41 (03) ◽  
pp. 544-552 ◽  
Author(s):  
R P Herrmann ◽  
P E Bailey

SummaryUsing the chromogenic substrate, Tos-Gly-Pro-Arg-pNA-HCL (Chromozym TH, Boehringer Mannheim) plasma thrombin was estimated in six cases of envenomation by Australian elapid snakes. All patients manifested findings chracteristic of defibrination due to envenomation by these snakes. Fibrin-fibrinogen degradation products were grossly elevated, as was plasma thrombin in all cases.Following treatment with antivenene, all abnormal coagulation parameters returned rapidly towards normal by 24 hours and plasma thrombin disappeared.


1991 ◽  
Vol 66 (05) ◽  
pp. 609-613 ◽  
Author(s):  
I R MacGregor ◽  
J M Ferguson ◽  
L F McLaughlin ◽  
T Burnouf ◽  
C V Prowse

SummaryA non-stasis canine model of thrombogenicity has been used to evaluate batches of high purity factor IX concentrates from 4 manufacturers and a conventional prothrombin complex concentrate (PCC). Platelets, activated partial thromboplastin time (APTT), fibrinogen, fibrin(ogen) degradation products and fibrinopeptide A (FPA) were monitored before and after infusion of concentrate. Changes in FPA were found to be the most sensitive and reproducible indicator of thrombogenicity after infusion of batches of the PCC at doses of between 60 and 180 IU/kg, with a dose related delayed increase in FPA occurring. Total FPA generated after 100-120 IU/kg of 3 batches of PCC over the 3 h time course was 9-12 times that generated after albumin infusion. In contrast the amounts of FPA generated after 200 IU/kg of the 4 high purity factor IX products were in all cases similar to albumin infusion. It was noted that some batches of high purity concentrates had short NAPTTs indicating that current in vitro tests for potential thrombogenicity may be misleading in predicting the effects of these concentrates in vivo.


1969 ◽  
Vol 22 (03) ◽  
pp. 496-507 ◽  
Author(s):  
W.G van Aken ◽  
J Vreeken

SummaryCarbon particles cause platelet aggregation in vitro and in vivo. Prior studies established that substances which modify thrombocyte aggregation also influence the rate at which carbon is cleared from the blood.This study was performed in order to elucidate the mechanism by which the carbon-platelet aggregates specifically accumulate in the RES.Activation of fibrinolysis by urokinase or streptokinase reduced the carbon clearance rate, probably due to generated fibrinogen degradation products (FDP). Isolated FDP decreased the carbon clearance and caused disaggregation of platelets and particles in vitro. Inhibition of fibrinolysis by epsilon-amino-caproic acid (EACA), initially accelerated the disappearance of carbon and caused particle accumulation outside the RES, predominantly in the lungs. It is supposed that platelet aggregation and locally activated fibrinolysis act together in the clearance of particles. In the normal situation the RES with its well known low fibrinolytic activity, becomes the receptor of the particles.


1992 ◽  
Vol 67 (03) ◽  
pp. 366-370 ◽  
Author(s):  
Katsuhiko Nawa ◽  
Teru Itani ◽  
Mayumi Ono ◽  
Katsu-ichi Sakano ◽  
Yasumasa Marumoto ◽  
...  

SummaryPrevious studies on recombinant human soluble thrombomodulin (rsTM) from Chinese hamster ovary cells revealed that rsTM was expressed as two proteins that differed functionally in vitro due to the presence (rsTMp) or absence (rsTMa) of chondroitin-4-sulfate. The current study evaluates the in vivo behavior of rsTM in rats and in a rat model of tissue factor-induced disseminated intravascular coagulation (DIC). rsTMp was more potent than rsTMa for prolongation of the activated partial thromboplastin time (APTT) and their in vivo half-lives determined by ELISA were 20 min for rsTMp and 5.0 h for rsTMa. Injection of a tissue factor suspension (5 mg/kg) resulted in DIC as judged by decreased platelet counts and fibrinogen concentrations, prolonged APTT, and increased fibrin and fibrinogen degradation products (FDP) levels. A bolus injection of either rsTM (0.2 mg/kg) 1 min before induction of DIC essentially neutralized effects on platelets, fibrinogen, and FDP levels, and had only a moderate effect on APTT prolongation. The dose of anticoagulant to inhibit the drop in platelet counts by 50% (ED50) was 0.2 mg/kg rsTMa, 0.07 mg/kg rsTMp, and 7 U/ kg heparin. The effect of increasing concentrations of rsTM and heparin on bleeding times were compared in experiments involving incision of the rat tail. Doubling of the bleeding times occurred at 5 mg/kg rsTMa, 3 mg/kg rsTMp or 90 U/kg heparin. These values represent a 25-fold increase over the ED50 for rsTMa, 43-fold for rsTMp and 13-fold for heparin. These results suggest that rsTMp is a potent anticoagulant to inhibit the platelet reduction when injected prior to the induction of DIC in rats.


Sign in / Sign up

Export Citation Format

Share Document